Common fixed point theorems for six selfmaps in \(b\)metric spaces with nonlinear contractive conditions

2023
Downloads

3494
Views
Authors
Liya Liu
 Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
Feng Gu
 Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
Abstract
In the framework of a bmetric space, by using the compatible and weak compatible conditions of self
mapping pair, we discussed the existence and uniqueness of the common fixed point for a class of \(\phi\)type
contraction mapping, some new common fixed point theorems are obtained. In the end of the paper, we
give some illustrative examples in support of our new results. The results presented in this paper extend
and improve some wellknown comparable results in the existing literature.
Share and Cite
ISRP Style
Liya Liu, Feng Gu, Common fixed point theorems for six selfmaps in \(b\)metric spaces with nonlinear contractive conditions, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 12, 59095930
AMA Style
Liu Liya, Gu Feng, Common fixed point theorems for six selfmaps in \(b\)metric spaces with nonlinear contractive conditions. J. Nonlinear Sci. Appl. (2016); 9(12):59095930
Chicago/Turabian Style
Liu, Liya, Gu, Feng. "Common fixed point theorems for six selfmaps in \(b\)metric spaces with nonlinear contractive conditions." Journal of Nonlinear Sciences and Applications, 9, no. 12 (2016): 59095930
Keywords
 \(b\)metric space
 common fixed point
 compatible maps
 weak compatible maps.
MSC
References

[1]
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered bmetric spaces, Math. Slovaca, 64 (2014), 941960

[2]
M. A. Akkouchi, A common fixed point theorem for expansive mappings under strict implicit conditions on b metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 50 (2011), 515

[3]
M. Boriceanu, Strict fixed point theorems for multivalued operators in bmetric spaces, Int. J. Mod. Math., 4 (2009), 285301

[4]
M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in bmetric spaces, Cent. Eur. J. Math., 8 (2010), 367377

[5]
S. S. Chang, S. K. Kang, N. J. Huang, Fixed point theorems for the pair of mappings in 2metric space, J. Chengdu Univ. Sci. Technol., 2 (1984), 107114

[6]
S. Czerwik, Contraction mappings in bmetric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 511

[7]
X. P. Ding, Some common fixed point theorems of commuting mappings, II, Math. Sem. Notes Kobe Univ., 11 (1983), 301305

[8]
M. L. Diviccaro, S. Sessa, Some remarks on common fixed points of four mappings, Jñānābha, 15 (1985), 139149

[9]
N. N. Fang, F. Gu, Two pairs of selfmappings common fixed point theorem in bmetric space, J. Hangzhou Normal Univ., Natur. Sci. Ed., 15 (2016), 282289

[10]
G. Jungck, Compatible mappings and common fixed points, II, Internat. J. Math. Math. Sci., 11 (1988), 285288

[11]
G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric space, Far East J. Math. Sci., 4 (1996), 199212

[12]
S. M. Kang, Y. J. Cho, G. Jungck, Common fixed points of compatible mappings, Internat. J. Math. Math. Sci., 13 (1990), 6166

[13]
H. Li, F. Gu, A new common fixed point theorem of four maps in bmetric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., 15 (2016), 7580

[14]
H. Li, F. Gu, A new common fixed point theorem of third power type contractive mappings in bmetric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., 15 (2016), 401407

[15]
L. L. Liu, The common fixed point theorem of (sub)compatible mappings and general ishikawa iterative loomed theorem, J. Qufu Normal Univ., Natur. Sci. Ed., 16 (1990), 4044

[16]
L. Liu, F. Gu, The common fixed point theorem for a class of twice power type \(\Phi\)contractive mapping in bmetric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., 15 (2016), 171177

[17]
S. Phiangsungnoen, W. Sintunavarat, P. Kumam, Fixed point results, generalized UlamHyers stability and well posedness via \(\alpha\)admissible mappings in bmetric spaces, Fixed Point Theory Appl., 2014 (2014), 17 pages

[18]
J. R. Roshan, N. Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in bmetric spaces, Hacet. J. Math. Stat., 43 (2014), 613624

[19]
W. Shatanawi, A. Pitea, R. Lazovié, Contraction conditions using comparison functions on bmetric spaces, Fixed Point Theory Appl., 2014 (2014), 11 pages

[20]
J. Yu, F. Gu, A new common fixed point theorem of six mappings in metric space, J. Hangzhou Norm. Univ., Natur. Sci. Ed., 5 (2011), 393398