The form of solutions and periodic nature for some rational difference equations systems
-
1572
Downloads
-
2341
Views
Authors
M. M. El-Dessoky
- Faculty of Science, Mathematics Department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
E. M. Elsayed
- Faculty of Science, Mathematics Department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
E. O. Alzahrani
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
Abstract
In this paper, we investigate the expressions of solutions and the periodic nature of the following systems
of rational difference equations with order four
\[x_{n+1} = \frac{y_{n-3} }{\pm 1\pm y_nz_{n-1}x_{n-2}y_{n-3}},
y_{n+1} = \frac{z_{n-3} }{\pm 1\pm z_nx_{n-1}y_{n-2}z_{n-3}},
z_{n+1} = \frac{x_{n-3} }{\pm 1\pm x_ny_{n-1}z_{n-2}x_{n-3}},\]
with initial conditions \(x_{-3}; x_{-2}; x_{-1}; x_0; y_{-3}; y_{-2}; y_{-1}; y_0; z_{-3}; z_{-2}; z_{-1}\) and \(z_0\) which are arbitrary real
numbers.
Share and Cite
ISRP Style
M. M. El-Dessoky, E. M. Elsayed, E. O. Alzahrani, The form of solutions and periodic nature for some rational difference equations systems, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 10, 5629--5647
AMA Style
El-Dessoky M. M., Elsayed E. M., Alzahrani E. O., The form of solutions and periodic nature for some rational difference equations systems. J. Nonlinear Sci. Appl. (2016); 9(10):5629--5647
Chicago/Turabian Style
El-Dessoky, M. M., Elsayed, E. M., Alzahrani, E. O.. "The form of solutions and periodic nature for some rational difference equations systems." Journal of Nonlinear Sciences and Applications, 9, no. 10 (2016): 5629--5647
Keywords
- Difference equations
- recursive sequences
- stability
- periodic solution
- system of difference equations.
MSC
References
-
[1]
R. P. Agarwal, Difference equations and inequalities, Theory, methods, and applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, New York (2000), (2000)
-
[2]
M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176 (2006), 768--774
-
[3]
N. Battaloglu, C. Çinar, I. Yalcinkaya, The dynamics of the difference equation\( x_{n+1} = \frac{\alpha x_{n-k}}{ \beta+\gamma x^p_{n-(k+1)}}\), Ars Combin., 97 (2010), 281--288
-
[4]
E. Camouzis, M. R. S. Kulenović, G. Ladas, O. Merino, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303--323
-
[5]
C. Çinar, On the positive solutions of the difference equation system \(x_{n+1 }= \frac{1}{ y_n} ; y_{n+1} =\frac{ y_n}{ x_{n-1}y_{n-1}}\), Appl. Math. Comput., 158 (2004), 303--305
-
[6]
D. Clark, M. R. S. Kulenović, A coupled system of rational difference equations, Comput. Math. Appl., 43 (2002), 849--867
-
[7]
S. E. Das, M. Bayram, On a system of rational difference equations, World Appl. Sci. J., 10 (2010), 1306--1312
-
[8]
Q. Din, T. F. Ibrahim, K. A. Khan, Behavior of a competitive system of second-order difference equations, Sci. World J., 2014 (2014), 9 pages
-
[9]
M. DiPippo, E. J. Janowski, M. R. S. Kulenović, Global asymptotic stability for quadratic fractional difference equation, Adv. Difference Equ., 2015 (2015), 13 pages
-
[10]
E. M. Elabbasy, S. M. Eleissawy, Asymptotic behavior of two dimensional rational system of difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20 (2013), 221--235
-
[11]
E. M. Elabbasy, H. A. El-Metwally, E. M. Elsayed, On the solutions of a class of difference equations systems, Demonstratio Math., 41 (2008), 109--122
-
[12]
E. M. Elabbasy, H. A. El-Metwally, E. M. Elsayed, Global behavior of the solutions of some difference equations, Adv. Difference Equ., 2011 (2011), 16 pages
-
[13]
S. Elaydi, An introduction to difference equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York (2005)
-
[14]
M. M. El-Dessoky, The form of solutions and periodicity for some systems of third-order rational difference equations, Math. Methods Appl. Sci., 39 (2016), 1076--1092
-
[15]
E. M. Elsayed, M. Mansour, M. M. El-Dessoky, Solutions of fractional systems of difference equations, Ars Combin., 110 (2013), 469--479
-
[16]
M. E. Erdogan, C. Cinar, I. Yalcinkaya, On the dynamics of the recursive sequence \(x_{n+1} = \frac{x_{n-1}}{\beta+\gamma x^2_{n-2}x_{n-4}+\gamma x_{n-2}x^2_{n-4}}\), Comput. Math. Appl., 61 (2011), 553--537
-
[17]
M. Garić-Demirović, M. Nurkanović, Dynamics of an anti-competitive two dimensional rational system of difference equations, Sarajevo J. Math., 7 (2011), 39--56
-
[18]
E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, Chapman & Hall/CRC, Boca Raton (2005)
-
[19]
E. A. Grove, G. Ladas, L. C. McGrath, C. T. Teixeira, Existence and behavior of solutions of a rational system, Appl. Nonlinear Anal., 8 (2001), 1--25
-
[20]
T. F. Ibrahim, Periodicity and analytic solution of a recursive sequence with numerical examples, J. Interdiscip. Math., 12 (2009), 701--708
-
[21]
V. L. Kocić, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[22]
M. R. S. Kulenović, Z. Nurkanović, Global behavior of a three-dimensional linear fractional system of difference equations, J. Math. Anal. Appl., 310 (2005), 673--689
-
[23]
A. S. Kurbanli , On the behavior of solutions of the system of rational dierence equations \(x_{n+1} =\frac{ x_{n-1}}{\gamma _nx_{n-1}-1} ; \gamma _{n+1} = \frac{\gamma _{n-1}}{ x_n\gamma_{ n-1}-1} ; z_{n+1} =\frac{ 1}{ \gamma _nz_n}\), Adv. Difference Equ., 2011 (2011), 8 pages
-
[24]
A. S. Kurbanli, C. Çinar, I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations \(x_{n+1} =\frac{ x_{n-1}}{ y_nx_{n-1}+1} , y_{n+1} =\frac{ y_{n-1}}{ x_ny_{n-1}+1}\), Math. Comput. Modelling, 53 (2011), 1261--1267
-
[25]
A. Y. Özban, On the system of rational difference equations \(x_{n+1} = \frac{a}{y_{n-3}}; y_{n+1} = \frac{by_{n-3}}{x_{n-q}y_{n-q}}\), Appl. Math. Comput., 188 (2007), 833--837
-
[26]
O. Özkan, A. S. Kurbanli, On a system of difference equations, Discrete Dyn. Nat. Soc., 2013 (2013), 7 pages
-
[27]
N. Touafek, E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (2012), 217--224
-
[28]
C.-Y. Wang, S. Wang, W. Wang, Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett., 24 (2011), 714--718
-
[29]
I. Yalcinkaya, On the global asymptotic behavior of a system of two nonlinear difference equations, Ars Combin., 95 (2010), 151--159
-
[30]
Y. Yang, L. Chen, Y.-G. Shi, On solutions of a system of rational difference equations, Acta Math. Univ. Comenian. (N.S.), 80 (2011), 63--70
-
[31]
X. F. Yang, Y. X. Liu, S. Bai, On the system of high order rational difference equations \(x_n =\frac{ a}{ y_{n-p}} ; y_n =\frac{ by_{n-p}}{ x_{n-q}y_{n-q}}\), Appl. Math. Comput., 171 (2005), 853--856
-
[32]
Z. H. Yuan, L. H. Huang, All solutions of a class of discrete-time systems are eventually periodic, Appl. Math. Comput., 158 (2004), 537--546
-
[33]
Q. H. Zhang, J. Z. Liu, Z. G. Luo, Dynamical behavior of a system of third-order rational difference equation, Discrete Dyn. Nat. Soc., 2015 (2015), 6 pages
-
[34]
Y. Zhang, X. F. Yang, G. M. Megson, D. J. Evans, On the system of rational difference equations \(x_n = A + \frac{1}{ y_{n-p}} ; y_n = A +\frac{ y_{n-1}}{ x_{n-r}y_{n-s}}\), Appl. Math. Comput., 176 (2006), 403--408