Some properties of the quasicompact-open topology on C(X)
-
2268
Downloads
-
3368
Views
Authors
Deniz Tokat
- Department of Mathematics, Faculty of Arts and Sciences, Nevsehir Hacı Bektas Veli University, 50300 Nevsehir, Turkey.
İsmail Osmanoğlu
- Department of Mathematics, Faculty of Arts and Sciences, Nevsehir Hacı Bektas Veli University, 50300 Nevsehir, Turkey.
Abstract
This paper introduces quasicompact-open topology on C(X) and compares this topology with the
compact-open topology and the topology of uniform convergence. Then it examines submetrizability, metrizability,
separability, and second countability of the quasicompact-open topology on C(X).
Share and Cite
ISRP Style
Deniz Tokat, İsmail Osmanoğlu, Some properties of the quasicompact-open topology on C(X) , Journal of Nonlinear Sciences and Applications, 9 (2016), no. 6, 3511--3518
AMA Style
Tokat Deniz, Osmanoğlu İsmail, Some properties of the quasicompact-open topology on C(X) . J. Nonlinear Sci. Appl. (2016); 9(6):3511--3518
Chicago/Turabian Style
Tokat, Deniz, Osmanoğlu, İsmail. "Some properties of the quasicompact-open topology on C(X) ." Journal of Nonlinear Sciences and Applications, 9, no. 6 (2016): 3511--3518
Keywords
- Function space
- set-open topology
- compact-open topology
- quasicompactness
- separability
- submetrizability
- second countability.
MSC
References
-
[1]
A. T. Al-Ani, Countably z-compact spaces, Arch. Math. (Brno), 50 (2014), 97-100
-
[2]
R. F. Arens, A topology for spaces of transformations, Ann. of Math., 47 (1946), 480-495
-
[3]
R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math., 1 (1951), 5-31.
-
[4]
A. J. D'Aristotle, Quasicompactness and functionally Hausdorff spaces, J. Aust. Math. Soc., 15 (1973), 319-324.
-
[5]
R. Engelking, General Topology, revised and completed ed., Heldermann Verlag, Berlin (1989)
-
[6]
R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., 51 (1945), 429-432.
-
[7]
Z. Frolik, Generalization of compact and Lindelöf spaces, Czechoslovak Math. J., 13 (1959), 172-217
-
[8]
L. Gillman, M. Jerison, Rings of continuous functions, Springer-Verlag, New York (1960)
-
[9]
D. Gulick, The \(\sigma\)-compact-open topology and its relatives, Math. Scand., 30 (1972), 159-176.
-
[10]
N. C. Heldermann , Developability and some new regularity axioms, Can. J. Math., 33 (1981), 641-663.
-
[11]
E. Hewitt, On two problems of Urysohn, Ann. of Math., 47 (1946), 503-509.
-
[12]
J. R. Jackson, Comparison of topologies on function spaces, Proc. Amer. Math. Soc., 3 (1952), 156-158.
-
[13]
J. K. Kohli, A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Appl. Gen. Topol., 7 (2006), 233-244.
-
[14]
J. K. Kohli, D. Singh, Between compactness and quasicompactness, Acta Math. Hungar., 106 (2005), 317-329.
-
[15]
S. Kundu, P. Garg, The pseudocompact-open topology on C(X), Topology Proc., 30 (2006), 279-299.
-
[16]
S. Kundu, A. B. Raha, The bounded-open topology and its relatives, Rend. Istit. Mat. Univ. Trieste, 27 (1995), 61-77.
-
[17]
W. G. McArthur, \(G_\delta\)-diagonals and metrization theorems, Pacific J. Math., 44 (1973), 613{617
-
[18]
R. A. McCoy, Second countable and separable function spaces, Amer. Math. Monthly, 85 (1978), 487-489.
-
[19]
R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Springer-Verlag, Berlin (1988)
-
[20]
A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl., 159 (2012), 3059-3066.
-
[21]
W. J. Pervin, Foundations of general topology, Academic Press, New York (1964)
-
[22]
L. A. Steen, J. A. Seebach, Counter Examples in Topology, Springer Verlag, New York (1978)
-
[23]
A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, 2nd ed., John Wiley & Sons, New York (1980)