Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
-
2834
Downloads
-
4021
Views
Authors
S. A. Mohiuddine
- Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
K. Raj
- School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India.
Abstract
In the present paper we introduce and study vector valued Orlicz-Lorentz sequence spaces \(l_{p,q,M,u,\Delta,A}(X)\) on Banach
space \(X\) with the help of a Musilak-Orlicz function \(M\) and for different positive indices p and q. We also study their cross
and topological duals. Finally, we introduce the operator ideals with the help of the corresponding scalar sequence spaces and
s-numbers.
Share and Cite
ISRP Style
S. A. Mohiuddine, K. Raj, Vector valued Orlicz-Lorentz sequence spaces and their operator ideals, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 338--353
AMA Style
Mohiuddine S. A., Raj K., Vector valued Orlicz-Lorentz sequence spaces and their operator ideals. J. Nonlinear Sci. Appl. (2017); 10(2):338--353
Chicago/Turabian Style
Mohiuddine, S. A., Raj, K.. "Vector valued Orlicz-Lorentz sequence spaces and their operator ideals." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 338--353
Keywords
- Lorentz sequence spaces
- s-numbers of operators
- Musielak-Orlicz function
- difference sequence spaces
- operator ideals.
MSC
References
-
[1]
L. R. Acharya, Linear operators and approximation quantities, Dissertation, I.I.T. Kanpur, India (2008)
-
[2]
A. Alotaibi, K. Raj, S. A. Mohiuddine, Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, 2015 (2015 ), 8 pages.
-
[3]
N. De Grande-De Kimpe, Generalized sequence spaces, Bull. Soc. Math. Belg., 23 (1971), 123–166.
-
[4]
M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), 377–386.
-
[5]
P. Foralewski, H. Hudzik, L. Szymaszkiewicz, On some geometric and topological properties of generalized Orlicz- Lorentz sequence spaces, Math. Nachr., 281 (2008), 181–198.
-
[6]
A. Grothendieck, Sur une notion de produit tensoriel topologique d’espaces vectoriels topologiques, et une classe remarquable d’espaces vectoriels liée à cette notion, (French) C. R. Acad. Sci. Paris, 233 (1951), 1556–1558.
-
[7]
M. Gupta, A. Bhar, Generalized Orlicz-Lorentz sequence spaces and corresponding operator ideals, Math. Slovaca, 64 (2014), 1475–1496.
-
[8]
P. K. Kamthan, M. Gupta , Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics , Marcel Dekker, Inc.,, New York (1981)
-
[9]
M. Kato, On Lorentz spaces \(l_{p,q}\{E\}\), Hiroshima Math. J., 6 (1976), 73–93.
-
[10]
H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169–176.
-
[11]
J. Lindenstrauss, L. Tzafriri, Classical Banach spaces,I , Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin-New York (1977)
-
[12]
S. A. Mohiuddine, K. Raj, A. Alotaibi, Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-normed spaces, J. Inequal. Appl., 2014 (2014), 16 pages.
-
[13]
J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin (1983)
-
[14]
J. Patterson, Generalized sequence spaces and matrix transformations, PhD diss., Dissertation, I.I.T. Kanpur, India (1980)
-
[15]
A. Pietsch, s-numbers of operators in Banach spaces, Studia Math., 51 (1974), 201–223.
-
[16]
A. Pietsch, Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1987)
-
[17]
K. Raj, S. Pandoh, Some vector-valued statistical convergent sequence spaces, Malaya J. Mat., 3 (2015), 161–167.
-
[18]
K. Raj, S. K. Sharma, Some vector-valued sequence spaces defined by a Musielak-Orlicz function, Rev. Roumaine Math. Pures Appl., 57 (2012), 383–399.
-
[19]
W. Rudin , Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York- Dsseldorf-Johannesburg (1976)
-
[20]
E. Savaş, M. Mursaleen, Matrix transformations in some sequence spaces, Istanbul Üniv. Fen Fak. Mat. Derg., 52 (1993), 1–5.
-
[21]
Y. Yılmaz, M. K. Özdemir, I. Solak, M. Candan, Operators on some vector valued Orlicz sequence spaces, F. Ü . Fen ve Mühendislik Bilimleri Dergisi, 17 (2005), 59–71.