A sharp generalization on cone b-metric space over Banach algebra
-
2728
Downloads
-
4957
Views
Authors
Huaping Huang
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China.
Stojan Radenovic
- Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120, Beograd, Serbia.
Guantie Deng
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China.
Abstract
The aim of this paper is to generalize a famous result for Banach-type contractive mapping from \(\rho(k)\in[0,\frac{1}{s})\) to \(\rho(k)\in[0,1)\)
in cone b-metric space over Banach algebra with coefficient \(s\geq 1\), where \(\rho(k)\) is the spectral radius of the generalized Lipschitz
constant \(k\). Moreover, some similar generalizations for the contractive constant \(k\) from \(k\in[0,\frac{1}{s})\) to \(k \in [0, 1)\) in cone b-metric
space and in b-metric space are also obtained. In addition, two examples are given to illustrate that our generalizations are in
fact real generalizations.
Share and Cite
ISRP Style
Huaping Huang, Stojan Radenovic, Guantie Deng, A sharp generalization on cone b-metric space over Banach algebra, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 429--435
AMA Style
Huang Huaping, Radenovic Stojan, Deng Guantie, A sharp generalization on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl. (2017); 10(2):429--435
Chicago/Turabian Style
Huang, Huaping, Radenovic, Stojan, Deng, Guantie. "A sharp generalization on cone b-metric space over Banach algebra." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 429--435
Keywords
- Cone b-metric space over Banach algebra
- fixed point
- c-sequence
- iterative sequence.
MSC
References
-
[1]
I. A. Bakhtin , The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, (1989), 26–37.
-
[2]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922),
-
[3]
M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367–377.
-
[4]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.
-
[5]
L. Gajić, V. Rakočević, Quasi-contractions on a nonnormal cone metric space , Funct. Anal. Appl., 46 (2012), 62–65.
-
[6]
H.-P. Huang, S. Radenović, Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., 8 (2015), 787–799.
-
[7]
H.-P. Huang, S. Radenović, Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566–583.
-
[8]
H.-P. Huang, S.-Y. Xu, Correction: Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2014 (2014 ), 5 pages.
-
[9]
S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601.
-
[10]
M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2015), 15 pages.
-
[11]
Z. Kadelburg, S. Radenović, V. Rakočević, Remarks on ''Quasi-contraction on a cone metric space'', Appl. Math. Lett., 22 (2009), 1674–1679.
-
[12]
P. K. Mishra, S. Sachdeva, S. K. Banerjee, Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 2 (2014), 19–22.
-
[13]
W. Sintunavarat, Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, ev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 110 (2016), 585–600.
-
[14]
W. Sintunavarat , Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 18 (2016), 397–416.
-
[15]
O. Yamaod, W. Sintunavarat, Y. J. Cho, Common fixed point theorems for generalized cyclic contraction pairs in b-metric spaces with applications, Fixed Point Theory Appl., 2015 (2015), 18 pages.
-
[16]
O. Yamaod, W. Sintunavarat, Y. J. Cho, Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces, Open Math., 14 (2016), 128–145.