From fuzzy metric spaces to modular metric spaces: a fixed point approach
-
2460
Downloads
-
4281
Views
Authors
Fairouz Tchier
- Mathematics Department, College of Science (Malaz), King Saud University, P. O. Box 22452, Riyadh, King Saudi Arabia.
Calogero Vetro
- Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy.
Francesca Vetro
- Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy.
Abstract
We propose an intuitive theorem which uses some concepts of auxiliary functions for establishing existence and uniqueness
of the fixed point of a self-mapping. First we work in the setting of fuzzy metric spaces in the sense of George and Veeramani,
then we deduce some consequences in modular metric spaces. Finally, a sample homotopy result is derived making use of the
main theorem.
Share and Cite
ISRP Style
Fairouz Tchier, Calogero Vetro, Francesca Vetro, From fuzzy metric spaces to modular metric spaces: a fixed point approach, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 451--464
AMA Style
Tchier Fairouz, Vetro Calogero, Vetro Francesca, From fuzzy metric spaces to modular metric spaces: a fixed point approach. J. Nonlinear Sci. Appl. (2017); 10(2):451--464
Chicago/Turabian Style
Tchier, Fairouz, Vetro, Calogero, Vetro, Francesca. "From fuzzy metric spaces to modular metric spaces: a fixed point approach." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 451--464
Keywords
- Fixed point
- fuzzy metric space
- modular metric space.
MSC
References
-
[1]
A. A. N. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., 2013 (2013 ), 11 pages.
-
[2]
R. P. Agarwal, M. Meehan, D. O’Regan , Fixed point theory and applications, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2002)
-
[3]
H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082–1094.
-
[4]
B. Azadifar, G. Sadeghi, R. Saadati, C.-K. Park, Integral type contractions in modular metric spaces, J. Inequal. Appl., 2013 (2013), 14 pages.
-
[5]
V. V. Chistyakov , Modular metric spaces, I, Basic concepts, Nonlinear Anal., 72 (2010), 1–14.
-
[6]
V. V. Chistyakov, Modular metric spaces,II, Application to superposition operators, Nonlinear Anal., 72 (2010), 15–30.
-
[7]
C. Di Bari, C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., 13 (2005), 973–982.
-
[8]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399.
-
[9]
V. Gregori, A. López-Crevillén, S. Morillas, A. Sapena, On convergence in fuzzy metric spaces, Topology Appl., 156 (2009), 3002–3006.
-
[10]
V. Gregori, S. Morillas, A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems, 161 (2010), 2193–2205.
-
[11]
V. Gregori, S. Romaguera, On completion of fuzzy metric spaces, Theme: Fuzzy intervals, Fuzzy Sets and Systems, 130 (2002), 399–404.
-
[12]
N. Hussain, P. Salimi , Implicit contractive mappings in modular metric and fuzzy metric spaces, Scientific World J., 2014 (2014), 12 pages.
-
[13]
F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194.
-
[14]
D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 158 (2007), 915–921.
-
[15]
L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338–353.