Tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras
-
2233
Downloads
-
4177
Views
Authors
Binghua Jiang
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China.
Zelin Cai
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China.
Jinyang Chen
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China.
Huaping Huang
- School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China.
Abstract
In this paper, based on the concept of cone b-metric space over Banach algebra, which was introduced by Huang and
Radenovic [H.-P. Huang, S. Radenović, J. Nonlinear Sci. Appl., 8 (2015), 787–799], we obtain some tripled common random
fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces. We consider
the obtained assertions without the assumption of normality of cones. The presented results generalize some coupled common
fixed point theorems in the existing literature.
Share and Cite
ISRP Style
Binghua Jiang, Zelin Cai, Jinyang Chen, Huaping Huang, Tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 2, 465--482
AMA Style
Jiang Binghua, Cai Zelin, Chen Jinyang, Huang Huaping, Tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras. J. Nonlinear Sci. Appl. (2017); 10(2):465--482
Chicago/Turabian Style
Jiang, Binghua, Cai, Zelin, Chen, Jinyang, Huang, Huaping. "Tripled random coincidence point and common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras." Journal of Nonlinear Sciences and Applications, 10, no. 2 (2017): 465--482
Keywords
- Tripled random fixed point
- tripled random coincidence point
- cone b-metric space over Banach algebra
- generalized Lipschitz constant
- tripled common random fixed point.
MSC
References
-
[1]
C. T. Aage, J. N. Salunke, Some fixed point theorems for expansion onto mappings on cone metric spaces, Acta Math. Sin. (Engl. Ser.), 27 (2011), 1101–1106.
-
[2]
M. Abbas, M. Ali Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202.
-
[3]
A. Aliouche, C. Simpson, Fixed points and lines in 2-metric spaces , Adv. Math., 229 (2012), 668–690.
-
[4]
A. Alotaibi, S. M. Alsulami, Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), 13 pages.
-
[5]
I. Altun, B. Damjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23 (2010), 310–316.
-
[6]
M. Asadi, B. E. Rhoades, H. Soleimani, Some notes on the paper ''The equivalence of cone metric spaces and metric spaces'', Fixed Point Theory Appl., 2012 (2012 ), 4 pages.
-
[7]
H. Aydi, M. Abbas, W. Sintunavarat, P. Kumam, Tripled fixed point of W-compatible mappings in abstract metric spaces, Fixed Point Theory Appl., 2012 (2012 ), 20 pages.
-
[8]
I. A. Bakhtin , The contraction mapping principle in almost metric space, Functional analysis Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
-
[9]
S.-B. Chen, W. Li, S.-P. Tian, Z.-Y. Mao, On optimization problems in quasi-metric spaces, in: Proc. 5th International Conf. on Machine Learning and Cybernetics, Dalian, (2006), 13–16.
-
[10]
C.-F. Chen, C.-X. Zhu, Fixed point theorems for n times reasonable expansive mapping, Fixed Point Theory Appl., 2008 (2008), 6 pages.
-
[11]
S. Chouhan, C. Malviya, A fixed point theorem for expansive type mappings in cone metric spaces, Int. Math. Forum, 6 (2011), 891–897.
-
[12]
L. Ćirić, V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal. Appl., 27 (2009), 1246–1259.
-
[13]
W.-S. Du, E. Karapınar, A note on cone b-metric and its related results: generalizations or equivalence?, Fixed Point Theory Appl., 2013 (2013), 7 pages.
-
[14]
Z. M. Fadail, A. G. B. Ahmad, Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 14 pages.
-
[15]
Y. Han, S.-Y. Xu, Some new theorems of expanding mappings without continuity in cone metric spaces, Fixed point Theory Appl., 2013 (2013 ), 9 pages.
-
[16]
C. J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53–72.
-
[17]
H.-P. Huang, S. Radenović, Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., 8 (2015), 787–799.
-
[18]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.
-
[19]
N. Hussain, A. Latif, N. Shafqat, Weak contractive inequalities and compatible mixed monotone random operators in ordered metric spaces, J. Inequal. Appl., 2012 (2012 ), 20 pages.
-
[20]
N. Hussian, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677–1684.
-
[21]
M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed point Theory Appl., 2010 (2010), 15 pages.
-
[22]
Z. Kadelburg, S. Radenović, Fixed point results in C-algebra-valued metric spaces are direct consequences of their standard metric counterparts, Fixed Point Theory Appl., 2016 (2016 ), 6 pages.
-
[23]
Z. Kadelburg, S. Radenović, V. Rakočević , A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (2011), 370–374.
-
[24]
E. Karapınar, Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 7 pages.
-
[25]
E. Karapınar, N. Van Luong, N. X. Thuan, Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab. J. Math. (Springer), 1 (2012), 329–339.
-
[26]
T.-C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc., 103 (1988), 1129–1135.
-
[27]
H. Liu, S.-Y. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., 2013 (2013 ), 10 pages.
-
[28]
S. Radenović, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl., 58 (2009), 1273–1278.
-
[29]
S. Radenović, Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci., 20 (2014), 29–39.
-
[30]
S. Rezapour, R. Hamlbarani, Some notes on the paper: ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., 332 (2007), 1468–1476, by L.-G. Huang, X. Zhang, J. Math. Anal. Appl., 345 (2008), 719–724.
-
[31]
W. Rudin, Functional analysis, Second edition, International Series in Pure and Applied Mathematics, McGraw- Hill, Inc., New York (1991)
-
[32]
S. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52 (2010), 797–801.
-
[33]
I. Sahni, M. Telci, Fixed points of contractive mappings on complete cone metric spaces, Hacet. J. Math. Stat., 38 (2009), 59–67.
-
[34]
B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal., 1 (2010), 46–56.
-
[35]
W. Shatanawi, F. Awawdeh, Some fixed and coincidence point theorems for expansive maps in cone metric spaces, Fixed point Theory Appl., 2012 (2012 ), 10 pages.
-
[36]
W. Shatanawi, Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Mat. Vesnik, 64 (2012), 139–146.
-
[37]
Y.-H, Shen, D. Qiu, W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., 25 (2012), 138–141.
-
[38]
L. Shi, S.-Y. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl., 2013 (2013 ), 11 pages.
-
[39]
S.-Y. Xu, S. Radenović, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed point Theory Appl., 2014 (2014 ), 12 pages.