Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\)
-
2637
Downloads
-
6186
Views
Authors
Junjian Zhao
- Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin 300387, China.
Zhitao Zhuang
- School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
Abstract
This paper deals with the convergence of the wavelet thresholding estimator on Besov spaces \(B_{p,q}^s(\mathbb{R}^n)\). We show firstly the equivalence of several Besov norms. It seems different with one dimensional case. Then we provide two convergence theorems for the wavelet thresholding estimator, which extend Liu and Wang's work [Y.-M. Liu, H.-Y. Wang, Appl. Comput. Harmon. Anal., \({\bf 32}\) (2012), 342--356].
Share and Cite
ISRP Style
Junjian Zhao, Zhitao Zhuang, Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\), Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6149--6158
AMA Style
Zhao Junjian, Zhuang Zhitao, Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\). J. Nonlinear Sci. Appl. (2017); 10(12):6149--6158
Chicago/Turabian Style
Zhao, Junjian, Zhuang, Zhitao. "Wavelet thresholding estimator on \(B_{p,q}^s(\mathbb{R}^n)\)." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6149--6158
Keywords
- Wavelet thresholding estimator
- Besov spaces
- convergence
MSC
References
-
[1]
G. Beylkin, Wavelets and fast numerical algorithms , Different perspectives on wavelets, San Antonio, TX, (1993), Proc. Sympos. Appl. Math., Amer. Math. Soc., Providence, RI, 47 (1993), 89–117.
-
[2]
D.-R. Chen, H.-T. Meng, Convergence of wavelet thresholding estimators of differential operators, Appl. Comput. Harmon. Anal., 25 (2008), 266–275.
-
[3]
C. Chesneau, Regression with random design: a minimax study , Statist. Probab. Lett., 77 (2007), 40–53.
-
[4]
C. Chesneau, J. Fadili, B. Maillot , Adaptive estimation of an additive regression function from weakly dependent data, J. Multivariate Anal., 133 (2015), 77–94.
-
[5]
A. Cohen, Wavelet methods in numerical analysis, Handbook of numerical analysis, Handb. Numer. Anal., North- Holland, Amsterdam, VII , (2000), 417–711.
-
[6]
I. Daubechies , Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)
-
[7]
D. L. Donoho, I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage , Biometrika, 81 (1994), 425–455.
-
[8]
W. Härdle, G. Kerkyacharian, D. Picard, A. Tsybakov , Wavelets, approximation, and statistical applications , Lecture Notes in Statistics, Springer-Verlag, New York (1998)
-
[9]
S. Kelly, M. A. Kon, L. A. Raphael , Local convergence for wavelet expansions, J. Funct. Anal., 126 (1994), 102–138.
-
[10]
Y.-M. Liu, H.-Y. Wang, Convergence order of wavelet thresholding estimator for differential operators on Besov spaces, Appl. Comput. Harmon. Anal., 32 (2012), 342–356.
-
[11]
Y.-M. Liu, J.-J. Zhao, An extension of Bittner and Urban’s theorem, Math. Comp., 82 (2013), 401–411.
-
[12]
T. Tao, On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal., 3 (1996), 384–387.
-
[13]
T. Tao, B. Vidakovic, Almost everywhere behavior of general wavelet shrinkage operators, Appl. Comput. Harmon. Anal., 9 (2000), 72–82.
-
[14]
H. Triebel , Theory of function spaces, II, Monographs in Mathematics, Birkhäuser Verlag, Basel (1992)
-
[15]
H. Triebel, Theory of function spaces, III, Monographs in Mathematics, Birkhäuser Verlag, Basel (2006)