On some extensions of Nadler's fixed point theorem
-
3102
Downloads
-
4568
Views
Authors
Najeh Redjel
- Laboratory of Informatics and Mathematics, University of Souk-Ahras, P. O. Box 1553, Souk-Ahras 41000, Algeria.
Abdelkader Dehici
- Laboratory of Informatics and Mathematics, University of Souk-Ahras, P. O. Box 1553, Souk-Ahras 41000, Algeria.
Abstract
In this paper, we give the notion of the pseudo-fixed point for multi-valued mappings which enable us to extend Nadler's theorem and other well-known results in the literature.
Share and Cite
ISRP Style
Najeh Redjel, Abdelkader Dehici, On some extensions of Nadler's fixed point theorem, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6159--6165
AMA Style
Redjel Najeh, Dehici Abdelkader, On some extensions of Nadler's fixed point theorem. J. Nonlinear Sci. Appl. (2017); 10(12):6159--6165
Chicago/Turabian Style
Redjel, Najeh, Dehici, Abdelkader. "On some extensions of Nadler's fixed point theorem." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6159--6165
Keywords
- Complete metric space
- Hausdorff metric
- multi-valued mapping
- pseudo-fixed point
- fixed point
- Nadler's fixed point theorem
MSC
References
-
[1]
J. P. Aubin , Optima and Equilibria: An introduction to Nonlinear Analysis, Springer-Verlag, Berlin (1998)
-
[2]
Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112.
-
[3]
K. Iseki , Multi-valued contraction mappings in complete metric spaces, Rend. Sem. Mat. Univ. Padova, 53 (1975), 15–19.
-
[4]
J. R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227 (1998), 55–67.
-
[5]
K. Kuratowski, Topology, Academic Press, New York (1966)
-
[6]
S. B. Nadler , Multi-valued contraction mappings , Pacific. J. Math., 30 (1969), 475–488.
-
[7]
S. Reich, Kannan’s fixed point theorem , Boll. Un. Mat. Ital., 4 (1971), 1–11.
-
[8]
S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42.