Inequalities for new class of fractional integral operators
-
2595
Downloads
-
6226
Views
Authors
Hasib Khan
- College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
- Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir Upper, 18000, Khyber Pakhtunkhwa, Pakistan.
Hongguang Sun
- College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
Wen Chen
- College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
Dumitru Baleanu
- College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
- Department of Mathematics, Cankaya University, 06530 Ankara, Turkey.
- Institute of Space Sciences, P. O. BOX, MG-23, 76900 Magrrele-Bucharest, Romania.
Abstract
The applications of fractional order integrals have promoted the study of inequalities. In this paper, we utilize recently introduced left- and right-fractional conformable integrals (FCI) for a class of decreasing \(n\) positive functions such that \(n\in N\), for the generalization of existing integral inequalities. Our results have the potentials to be used for the investigation of positive solutions of different classes of fractional differential equations.
Share and Cite
ISRP Style
Hasib Khan, Hongguang Sun, Wen Chen, Dumitru Baleanu, Inequalities for new class of fractional integral operators, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6166--6176
AMA Style
Khan Hasib, Sun Hongguang, Chen Wen, Baleanu Dumitru, Inequalities for new class of fractional integral operators. J. Nonlinear Sci. Appl. (2017); 10(12):6166--6176
Chicago/Turabian Style
Khan, Hasib, Sun, Hongguang, Chen, Wen, Baleanu, Dumitru. "Inequalities for new class of fractional integral operators." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6166--6176
Keywords
- Fractional integral inequalities
- left-fractional conformable integral
- right-fractional conformable integral
MSC
References
-
[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
-
[2]
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 10 pages.
-
[3]
R. P. Agarwal, A. Özbekler , Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term , J. Comput. Appl. Math., 314 (2017), 69–78.
-
[4]
D. Băleanu, R. P. Agarwal, H. Khan, R. A. Khan, H. Jafari , On the existence of solution for fractional differential equations of order \(3 < \delta\leq 4\), Adv. Difference Equ., 2015 (2015), 9 pages.
-
[5]
D. Băleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 8 pages.
-
[6]
D. Băleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Difference Equ., 2015 (2015), 14 pages.
-
[7]
D. Băleanu, O. G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59 (2010), 1835–1841.
-
[8]
D. Băleanu, O. G. Mustafa, R. P. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129–1132.
-
[9]
D. Băleanu, O. G. Mustafa, R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys., 2010 (2010), 7 pages.
-
[10]
A. Bolandtalat, E. Babolian, H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials, Open Phys., 14 (2016), 226–230.
-
[11]
A. Debbouche, V. Antonov , Finite-dimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives, Nonlinear Studies, 24 (2017), 527–535.
-
[12]
H. Jafari, H. K Jassim, S. P. Moshokoa, V. M. Ariyan, F. Tchier , Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mechanical Eng., 2016 (2016), 6 pages.
-
[13]
H. Jafari, H. K. Jassim, F. Tchier, D. Baleanu , On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators, Entropy, 2016 (2016), 12 pages.
-
[14]
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu , On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 16 pages.
-
[15]
M. Jleli, M. Kirane, B. Samet , Hartman-Winter-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn Nat Soc., 2017 (2017), 8 pages.
-
[16]
H. Khalil, K. Shah, R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progress Frac. Differ. Equ. Appl., 2 (2016), 31–39.
-
[17]
H. Khan, H. Jafari, D. Baleanu, R. A. Khan, A. Khan , On iterative solutions and error estimations of a coupled system of fractional order differential-integral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., 2017 (2017), 13 pages.
-
[18]
H. Khan, Y. Li, W. Chen, D. Baleanu, A. Khan , Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator , Bound. value Probl., 2017 (2017), 16 pages.
-
[19]
A. Khan, Y. Li, K. Shah, T. S. Khan , On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), 9 pages.
-
[20]
Y. Li, K. Shah, R. A. Khan, Iterative technique for coupled integral boundary value problem of non-linear of non-integer order differential equations, Adv. Difference Equ., 2017 (2017), 14 pages.
-
[21]
W. Liu, Q. A. Ngo, V. N. Huy , Several interesting integral inequalities , J. Math. Inequal., 3 (2009), 201–212.
-
[22]
X.-J. Neito, J. A. T. Machado, J. J. Nieto, A new family of the local fractional PDEs , Fund. Inform., 151 (2017), 63–75.
-
[23]
D. O’Regan, B. Samet , Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl. , 2015 (2015), 10 pages.
-
[24]
M. Z. Sarikaya, H. Budak , Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527–1538.
-
[25]
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar , Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 10 pages.
-
[26]
E. Set, M. Tomar, M. Z. Sarikaya, On fractional Gruss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34.
-
[27]
K. Shah, R. A. Khan , Study of solution to a toppled system of fractional Differential Equations with integral boundary conditions , Int. J. Appl. Comput. Math., 3 (2017), 2369–2388.
-
[28]
H.-G. Sun, Y. Zhang, W. Chen, D. M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contaminant Hydrology, 157 (2014), 47–58.
-
[29]
Y. Tian, M. Fan, Y. Sun, Certain nonlinear integral inequalities and their applications, Discrete Dyn. Nat. Soc., 2017 (2017), 8 pages.
-
[30]
M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27 (2013), 559–565.
-
[31]
X. -J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., 21 (2016), 1161–1171.
-
[32]
X. Yang, K. Lo , Lyapunov-type inequality for a class of even order differential equations, Appl. Math. Comput., 215 (2010), 3884–3890.
-
[33]
X.-J. Yang, J. A. T. Machao, D. Baleanu, Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Romanian Reports in Physics, 2017 (2017), 19 pages.
-
[34]
X.-J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756.