Inequalities for new class of fractional integral operators

1514
Downloads

2794
Views
Authors
Hasib Khan
 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
 Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir Upper, 18000, Khyber Pakhtunkhwa, Pakistan.
Hongguang Sun
 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
Wen Chen
 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
Dumitru Baleanu
 College of Engineering, Mechanics and Materials, Hohai University, 211100, Nanjing, P. R. China.
 Department of Mathematics, Cankaya University, 06530 Ankara, Turkey.
 Institute of Space Sciences, P. O. BOX, MG23, 76900 MagrreleBucharest, Romania.
Abstract
The applications of fractional order integrals have promoted the study of inequalities. In this paper, we utilize recently introduced left and rightfractional conformable integrals (FCI) for a class of decreasing \(n\) positive functions such that \(n\in N\), for the generalization of existing integral inequalities. Our results have the potentials to be used for the investigation of positive solutions of different classes of fractional differential equations.
Share and Cite
ISRP Style
Hasib Khan, Hongguang Sun, Wen Chen, Dumitru Baleanu, Inequalities for new class of fractional integral operators, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 61666176
AMA Style
Khan Hasib, Sun Hongguang, Chen Wen, Baleanu Dumitru, Inequalities for new class of fractional integral operators. J. Nonlinear Sci. Appl. (2017); 10(12):61666176
Chicago/Turabian Style
Khan, Hasib, Sun, Hongguang, Chen, Wen, Baleanu, Dumitru. "Inequalities for new class of fractional integral operators." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 61666176
Keywords
 Fractional integral inequalities
 leftfractional conformable integral
 rightfractional conformable integral
MSC
References

[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.

[2]
P. Agarwal, M. Jleli, M. Tomar, Certain HermiteHadamard type inequalities via generalized kfractional integrals, J. Inequal. Appl., 2017 (2017), 10 pages.

[3]
R. P. Agarwal, A. Özbekler , Lyapunov type inequalities for mixed nonlinear RiemannLiouville fractional differential equations with a forcing term , J. Comput. Appl. Math., 314 (2017), 69–78.

[4]
D. Băleanu, R. P. Agarwal, H. Khan, R. A. Khan, H. Jafari , On the existence of solution for fractional differential equations of order \(3 < \delta\leq 4\), Adv. Difference Equ., 2015 (2015), 9 pages.

[5]
D. Băleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 8 pages.

[6]
D. Băleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Difference Equ., 2015 (2015), 14 pages.

[7]
D. Băleanu, O. G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59 (2010), 1835–1841.

[8]
D. Băleanu, O. G. Mustafa, R. P. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129–1132.

[9]
D. Băleanu, O. G. Mustafa, R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys., 2010 (2010), 7 pages.

[10]
A. Bolandtalat, E. Babolian, H. Jafari, Numerical solutions of multiorder fractional differential equations by Boubaker Polynomials, Open Phys., 14 (2016), 226–230.

[11]
A. Debbouche, V. Antonov , Finitedimensional diffusion models of heat transfer in fractal mediums involving local fractional derivatives, Nonlinear Studies, 24 (2017), 527–535.

[12]
H. Jafari, H. K Jassim, S. P. Moshokoa, V. M. Ariyan, F. Tchier , Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mechanical Eng., 2016 (2016), 6 pages.

[13]
H. Jafari, H. K. Jassim, F. Tchier, D. Baleanu , On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators, Entropy, 2016 (2016), 12 pages.

[14]
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu , On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 16 pages.

[15]
M. Jleli, M. Kirane, B. Samet , HartmanWintertype inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn Nat Soc., 2017 (2017), 8 pages.

[16]
H. Khalil, K. Shah, R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progress Frac. Differ. Equ. Appl., 2 (2016), 31–39.

[17]
H. Khan, H. Jafari, D. Baleanu, R. A. Khan, A. Khan , On iterative solutions and error estimations of a coupled system of fractional order differentialintegral equations with initial and boundary conditions, Differ. Equ. Dyn. Syst., 2017 (2017), 13 pages.

[18]
H. Khan, Y. Li, W. Chen, D. Baleanu, A. Khan , Existence of solution and HyersUlam stability for a coupled system of fractional differential equations with pLaplacian operator , Bound. value Probl., 2017 (2017), 16 pages.

[19]
A. Khan, Y. Li, K. Shah, T. S. Khan , On coupled pLaplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), 9 pages.

[20]
Y. Li, K. Shah, R. A. Khan, Iterative technique for coupled integral boundary value problem of nonlinear of noninteger order differential equations, Adv. Difference Equ., 2017 (2017), 14 pages.

[21]
W. Liu, Q. A. Ngo, V. N. Huy , Several interesting integral inequalities , J. Math. Inequal., 3 (2009), 201–212.

[22]
X.J. Neito, J. A. T. Machado, J. J. Nieto, A new family of the local fractional PDEs , Fund. Inform., 151 (2017), 63–75.

[23]
D. O’Regan, B. Samet , Lyapunovtype inequalities for a class of fractional differential equations, J. Inequal. Appl. , 2015 (2015), 10 pages.

[24]
M. Z. Sarikaya, H. Budak , Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527–1538.

[25]
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar , Generalized HermiteHadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 10 pages.

[26]
E. Set, M. Tomar, M. Z. Sarikaya, On fractional Gruss type inequalities for kfractional integrals, Appl. Math. Comput., 269 (2015), 29–34.

[27]
K. Shah, R. A. Khan , Study of solution to a toppled system of fractional Differential Equations with integral boundary conditions , Int. J. Appl. Comput. Math., 3 (2017), 2369–2388.

[28]
H.G. Sun, Y. Zhang, W. Chen, D. M. Reeves, Use of a variableindex fractionalderivative model to capture transient dispersion in heterogeneous media, J. Contaminant Hydrology, 157 (2014), 47–58.

[29]
Y. Tian, M. Fan, Y. Sun, Certain nonlinear integral inequalities and their applications, Discrete Dyn. Nat. Soc., 2017 (2017), 8 pages.

[30]
M. Tunç, On new inequalities for hconvex functions via RiemannLiouville fractional integration, Filomat, 27 (2013), 559–565.

[31]
X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heattransfer problems, Therm. Sci., 21 (2016), 1161–1171.

[32]
X. Yang, K. Lo , Lyapunovtype inequality for a class of even order differential equations, Appl. Math. Comput., 215 (2010), 3884–3890.

[33]
X.J. Yang, J. A. T. Machao, D. Baleanu, Anomalous diffusion models with general fractional derivatives within the kernels of the extended MittagLeffler type functions, Romanian Reports in Physics, 2017 (2017), 19 pages.

[34]
X.J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756.