Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear differential equation
-
2431
Downloads
-
4826
Views
Authors
Sung-Soo Pyo
- Department of Mathematics Education, Silla University, Busan, Rep. of Korea.
Taekyun Kim
- Department of Mathematics, Kwangwoon University, Seoul, Rep. of Korea.
Seog-Hoon Rim
- Department of Mathematics Education, Kyungpook National University, Taegu, Rep. of Korea.
Abstract
In [T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Glob. J. Pure Appl. Math., \({\bf 12}\) (2016), 1893--1901], Kim et al. presented some identities for the
Bernoulli numbers of the second kind using differential equation.
Here we use this differential equation in a different way. In this
paper, we deduce some identities of the degenerate Daehee numbers
with the Bernoulli numbers of the second kind of order \(r\).
Share and Cite
ISRP Style
Sung-Soo Pyo, Taekyun Kim, Seog-Hoon Rim, Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear differential equation, Journal of Nonlinear Sciences and Applications, 10 (2017), no. 12, 6219--6228
AMA Style
Pyo Sung-Soo, Kim Taekyun, Rim Seog-Hoon, Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear differential equation. J. Nonlinear Sci. Appl. (2017); 10(12):6219--6228
Chicago/Turabian Style
Pyo, Sung-Soo, Kim, Taekyun, Rim, Seog-Hoon. "Identities of the degenerate Daehee numbers with the Bernoulli numbers of the second kind arising from nonlinear differential equation." Journal of Nonlinear Sciences and Applications, 10, no. 12 (2017): 6219--6228
Keywords
- Degenerate Daehee numbers
- Bernoulli numbers of the second kind
- nonlinear differential equation
MSC
References
-
[1]
L. Carlitz, Extended Stirling and exponential numbers, Duke Math. J., 32 (1965), 205–224.
-
[2]
L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers , Utilitas Math., 15 (1979), 51–88.
-
[3]
D. V. Dolgy, T. Kim, L.-C. Jang, H.-I. Kwon, J. J. Seo, Some identities of symmetry for the degenerate q-Bernoulli polynomials under symmetry group of degree n, Glob. J. Pure Appl. Math., 12 (2016), 4385–4394.
-
[4]
B. S. El-Desouky, A. Mustafa, New results on higher-order Daehee and Bernoulli numbers and polynomials, Adv. Difference Equ., 2016 (2016), 21 pages.
-
[5]
B. S. El-Desouky, A. Mustafa, F. M. Abdel-Moneim, Multiparameter Higher Order Daehee and Bernoulli Numbers and Polynomials, Applied Math., 2017 (2017), 775–785.
-
[6]
G.-W. Jang, T. Kim, Revisit of identities of Daehee numbers arising from nonlinear differential equations , Proc. Jangjeon Math. Soc., 20 (2017), 163–177.
-
[7]
G.-W. Jang, T. Kim, Some identities of ordered Bell numbers arising from differential equation, Adv. Stud. Contemp. Math., 27 (2017), 385–397.
-
[8]
G.-W. Jang, J. Kwon, J. G. Lee , Some identities of degenerate Daehee numbers arising from nonlinear differential equation, Adv. Difference Equ., 2017 (2017), 10 pages.
-
[9]
T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory, 132 (2012), 2854–2865.
-
[10]
T. Kim, On the degenerate Cauchy numbers and polynomials, Proc. Jangjeon Math. Soc., 18 (2015), 307–312.
-
[11]
T. Kim, Degenerate Cauchy numbers and polynomials of the second kind, Adv. Stud. Contemp. Math., 27 (2017), 441– 449.
-
[12]
D. S. Kim, T. Kim, Some identities for Bernoulli numbers of the second kind arising from a non-linear differential equation, Bull. Korean Math. Soc., 52 (2015), 2001–2010.
-
[13]
T. Kim, D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., 23 (2016), 88–92.
-
[14]
D. S. Kim, T. Kim , A note on degenerate Eulerian numbers and polynomials, Adv. Stud. Contemp. Math., 27 (2017), 431–440.
-
[15]
D. S. Kim, T. Kim, On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 111 (2017), 435–446.
-
[16]
D. S. Kim, T. Kim, D. V. Dolgy , A note on degenerate Bernoulli numbers and polynomials associated with p-adic invariant integral on \(\mathbb{Z}_p\), Appl. Math. Comput., 259 (2015), 198–204.
-
[17]
D. S. Kim, T. Kim, G. -W. Jang, Some identities of partially degenerate Touchard polynomials arising from differential equations, Adv. Stud. Contemp. Math., 27 (2017), 243–251.
-
[18]
T. Kim, D. S. Kim, K.-W. Hwang, J. J. Seo, Some identities of Laguerre polynomials arising from differential equations , Adv. Difference Equ., 2016 (2016), 9 pages.
-
[19]
T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Higher-order Cauchy Numbers and Polynomials, Appl. Math. Sci., 9 (2015), 1989–2004.
-
[20]
T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Differential equations arising from the generating function of general modified degenerate Euler numbers, Adv. Difference Equ., 2016 (2016), 7 pages.
-
[21]
T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Revisit nonlinear differential equations associated with Bernoulli numbers of the second kind, Glob. J. Pure Appl. Math., 12 (2016), 1893–1901.
-
[22]
T. Kim, D. S. Kim, T. Mansour, J. J. Seo, Linear differential equations for families of polynomials, J. Inequal. Appl., 2016 (2016), 8 pages.
-
[23]
J.-W. Park, J. Kwon, A note on the Degenerate High order Daehee polynomials, Appl. Math. Sic., 9 (2015), 4635–4642.
-
[24]
N. L. Wang, H. Li, Some identities on the Higher-order Daehee and Changhee Numbers , Pure Appl. Math. J., 4 (2015), 33–37.