Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space
Volume 11, Issue 3, pp 358--367
http://dx.doi.org/10.22436/jnsa.011.03.04
Publication Date: February 14, 2018
Submission Date: July 03, 2017
Revision Date: October 13, 2017
Accteptance Date: December 18, 2017
-
2286
Downloads
-
3301
Views
Authors
Lingjuan Ye
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China.
Congcong Shen
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China.
Abstract
In this paper we introduce the notion of weakly \((s,r)\)-contractive multi-valued operator on \(b\)-metric space and establish some fixed point theorems for this operator. In addition, an application to the differential equation is given to illustrate usability of obtained results.
Share and Cite
ISRP Style
Lingjuan Ye, Congcong Shen, Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 3, 358--367
AMA Style
Ye Lingjuan, Shen Congcong, Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space. J. Nonlinear Sci. Appl. (2018); 11(3):358--367
Chicago/Turabian Style
Ye, Lingjuan, Shen, Congcong. "Weakly \(\mathbf{(s,r)}\)-contractive multi-valued operators on \(\mathbf{b}\)-metric space." Journal of Nonlinear Sciences and Applications, 11, no. 3 (2018): 358--367
Keywords
- \(b\)-metric space
- weakly \((s
- r)\)-contractive multi-valued operator
- fixed point theorem
MSC
References
-
[1]
S. Banach, Sur les operations dans les ensembles abstraits et leures applications aux equations integrales, Fundam. Math., 3 (1922), 133–181.
-
[2]
M. Boriceanu, M. Bota, A. Petruşel , Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367–377.
-
[3]
S. Czerwik , Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.
-
[4]
S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
-
[5]
P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 8 pages.
-
[6]
N. Hussain, D. Đorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012 (2012 ), 12 pages.
-
[7]
N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg , Fixed points of cyclic weakly (\(\psi,\phi, L,A, B\))-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013 (2013 ), 18 pages.
-
[8]
N. Hussain, N. Yasmin, N. Shafqat , Multi-valued Ćirić contractions on metric spaces with applications, Filomat, 28 (2014), 1953–1964.
-
[9]
H. Işık, D. Türkoğlu , Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces , Fixed Point Theory Appl., 2013 (2013 ), 12 pages.
-
[10]
H. Işık, D. Türkoğlu, Coupled fixed point theorems for new contractive mixed monotone mappings and applications to integral equations, Filomat, 28 (2014), 1253–1264.
-
[11]
H. Işık, D. Türkoğlu , Generalized weakly alfa-contractive mappings and applications to ordinary differential equations , Miskolc Math. Notes, 17 (2016), 365–379.
-
[12]
T. Kamran, S. Hussain , Weakly (s, r)-contractive multi-valued operators, Rend. Circ. Mat. Palermo., 64 (2015), 475–482.
-
[13]
J. T. Markin, Continuous dependence of fixed point sets , Proc. Amer. Math. Soc., 38 (1973), 545–547.
-
[14]
R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163.
-
[15]
S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
-
[16]
J. J. Nieto, R. Rodríguez-López , Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order, 22 (2005), 223–239.
-
[17]
O. Popescu , A new type of contractive multivalued operators , Bull. Sci. Math., 137 (2013), 30–44.
-
[18]
S. Reich , Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42.
-
[19]
S. Reich, A. J. Zaslavski , Genericity in Nonlinear Analysis, Springer, New York (2014)
-
[20]
B. H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693.
-
[21]
J. R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229–245.
-
[22]
J. R. Roshan, V. Parvaneh, Z. Kadelburg, N. Hussain , New fixed point results in b-rectangular metric spaces , Nonlinear Anal. Model. Control, 21 (2016), 614–634.
-
[23]
I. A. Rus , Basic problems of the metric fixed point theory revisited (II) , Studia Univ. Babeş-Bolyai Math., 36 (1991), 81–89.
-
[24]
S. L. Singh, S. Czerwik, K. Król, A. Singh, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24 (2008), 401–416.
-
[25]
L. Wang, The fixed point method for intuitionistic fuzzy stability of a quadratic functional equation , Fixed Point Theory Appl., 2010 (2010 ), 7 pages.