Fixed point belonging to the zero-set of a given function
Volume 11, Issue 3, pp 417--424
http://dx.doi.org/10.22436/jnsa.011.03.09
Publication Date: February 22, 2018
Submission Date: October 30, 2017
Revision Date: December 28, 2017
Accteptance Date: December 31, 2017
-
1867
Downloads
-
3196
Views
Authors
Francesca Vetro
- Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Abstract
We prove the existence and uniqueness of fixed point belonging to the zero-set of a given function. The results are established in the setting of metric spaces and partial metric spaces. Our approach combines the recent notions of \((F,\varphi)\)-contraction and \(\mathcal{Z}\)-contraction. The main result allows to deduce, as a particular case, some of the most known results in the literature. An example supports the theory.
Share and Cite
ISRP Style
Francesca Vetro, Fixed point belonging to the zero-set of a given function, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 3, 417--424
AMA Style
Vetro Francesca, Fixed point belonging to the zero-set of a given function. J. Nonlinear Sci. Appl. (2018); 11(3):417--424
Chicago/Turabian Style
Vetro, Francesca. "Fixed point belonging to the zero-set of a given function." Journal of Nonlinear Sciences and Applications, 11, no. 3 (2018): 417--424
Keywords
- Fixed point
- metric space
- partial metric space
- nonlinear contraction
- simulation function
MSC
References
-
[1]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[2]
D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464
-
[3]
M. Jleli, B. Samet, C. Vetro, Fixed point theory in partial metric spaces via \(\varphi\)-fixed point’s concept in metric spaces, J. Inequal. Appl., 2014 (2014), 9 pages
-
[4]
F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189–1194
-
[5]
S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183–197
-
[6]
S. J. O’Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. , 806 (1996), 304–315
-
[7]
D. Paesano, P. Vetro, Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911–920
-
[8]
S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42
-
[9]
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693
-
[10]
B. Samet, C. Vetro, F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl., 2013 (2013 ), 11 pages
-
[11]
C. Vetro, F. Vetro, Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results, Topology Appl., 164 (2014), 125–137