Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces
Volume 14, Issue 5, pp 359371
http://dx.doi.org/10.22436/jnsa.014.05.06
Publication Date: April 19, 2021
Submission Date: January 22, 2021
Revision Date: February 27, 2021
Accteptance Date: March 18, 2021
Authors
J. N. Ezeora
 Department of Mathematics and Statistics, University of Port Harcpourt, Nigeria.
P. C. Jackreece
 Department of Mathematics and Statistics, University of Port Harcpourt, Nigeria.
Abstract
In this article, we introduce a hybrid iteration involving inertialterm for split equilibrium problem and fixed point for a finite family of asymptotically
strictly pseudocontractive mappings. We prove that the sequence converges strongly to a solution of split equilibrium problem and a common fixed point of a finite family of asymptotically strictly
pseudocontractive mappings. The results proved extend and improve recent results of Chang et al. [S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Appl. Math. Comput., \(\bf 219\) (2013), 1041610424], Dewangan et al. [R. Dewangan, B. S. Thakur, M. Postolache, J. Inequal. Appl., \(\bf 2014\) (2014), 11 pages],
and many others.
Share and Cite
ISRP Style
J. N. Ezeora, P. C. Jackreece, Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces, Journal of Nonlinear Sciences and Applications, 14 (2021), no. 5, 359371
AMA Style
Ezeora J. N., Jackreece P. C., Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces. J. Nonlinear Sci. Appl. (2021); 14(5):359371
Chicago/Turabian Style
Ezeora, J. N., Jackreece, P. C.. "Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces." Journal of Nonlinear Sciences and Applications, 14, no. 5 (2021): 359371
Keywords
 Total asymptotically strict pseudocontractive mapping
 split equilibrium problem
 fixed point problem
 inertialstep
 bounded linear operator
MSC
References

[1]
Y. I. Alber, C. E. Chidume, H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., 2006 (2006), 20 pages

[2]
P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, 62 (2013), 271283

[3]
K. Aoyama, F. Kohsaka, W. Takahashi, Three generalizations of firmly nonexpansive mappings: their relations and continuity properties, J. Nonlinear Convex Anal., 10 (2009), 131147

[4]
Y. Arfat, P. Kumam, P. Sa Ngiamsunthorn, M. A. A. Khan, H. Sarwar, H. FukharudDin, Approximation results for split equilibrium problems and fixed point problems of nonexpansive semigroup in Hilbert spaces, Adv. Difference Equ., 2020 (2020), 21 pages

[5]
A. Beck, M. Teboulle, A fast iterative shrinkagethresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183202

[6]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student., 63 (1994), 123145

[7]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197228

[8]
C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problems, Inverse Problem, 18 (2002), 441453

[9]
L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214 (2008), 186201

[10]
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 23532365

[11]
Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221239

[12]
Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiset split feasibility problem and its applications, Inverse Problem, 21 (2005), 20712084

[13]
Y. Censor, A. Motov, A. Segal, Pertured projections and subgradient projections for the multiplesets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 12441256

[14]
S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Split feasibility problem for Quasinonexpansive multivalued mappings and total asymptotically strict pseudo contractive mappings, Appl. Math. Comput., 219 (2013), 1041610424

[15]
C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, Berlin (2009)

[16]
P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155270

[17]
P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117136

[18]
R. Dewangan, B. S. Thakur, M. Postolache, A hybrid iteration for asymptotically strictly pseudocontractive mappings, J. Inequal. Appl.,, 2014 (2014), 11 pages

[19]
J. N. Ezeora, Iterative Solution of Fixed Points Problem, System of Generalized Mixed Equilibrium Problems and Variational Inclusion Problems, Thai J. Math., 12 (2014), 223244

[20]
J. N. Ezeora, R. C. Ogbonna, Split feasibilty problem for countable family of multivalued nonlinear mappings, Mathematicki Vesnik, 70 (2018), 233242

[21]
D. V. Hieu, An inertiallike proximal algorithm for equilibrium problems, Math. Methods Oper. Res., 88 (2018), 399415

[22]
C. Izuchukwu, F. O. Isiogugu, C. C. Okeke, A new viscositytype iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces, J. Inequal. Appl., 2019 (2019), 33 pages

[23]
C. Izuchukwu, C. C. Okeke, F. O. Isiogugu, A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl., 20 (2018), 25 pages

[24]
Q. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26 (1996), 18351842

[25]
L. V. Long, D. V. Thong, V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization, 68 (2019), 23352363

[26]
Z. Ma, L. Wang, An algorithm with strong convergence for the split common fixed point problem of total asymptotically strict pseudocontraction mappings,, J. Inequal. Appl., 2015 (2015), 13 pages

[27]
E. Masad, S. Reich, A note on the multipleset split feasibility problem in Hilbert spaces, J. Nonlinear Convex Anal., 8 (2007), 367371

[28]
S. Plubtieng, K. Sombut, Weak convergence theorems for a system of mixed equilibrium problems and nonspreading mappings in a Hilbert space, J. Inequal. Appl., 2010 (2010), 12 pages

[29]
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., 4 (1964), 117

[30]
Y. Shehu, Fixed Point Solutions of Generalized Equilibrium Problems for Nonexpansive Mappings, J. Comput. Appl. Math., 234 (2010), 892898

[31]
K. Sitthithakerngkiet, J. Deepho, J. MartÄ±nezMoreno, P. Kumam, Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems, Numer. Algorithms, 79 (2018), 801824

[32]
S. Takahashi, W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69 (2008), 10251033

[33]
C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers Group, Dordrecht (1994)

[34]
H.K. Xu, Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems, 26 (2010), 17 pages

[35]
L. Yang, S.S. Chang, Y. J. Cho, J. K. Kim, Multipleset split feasibility problems for total asymptotically strict pseudocontractions mappings, Fixed Point Theory Appl., 2011 (2011), 111

[36]
J. Zhao, D. Hou, A selfadaptive iterative algorithm for the split common fixed point problems, Numer. Algorithms, 82 (2019), 10471063