Describing ion sound waves in plasma
Volume 8, Issue 1, pp 1--17
https://dx.doi.org/10.22436/mns.08.01.01
Publication Date: November 01, 2022
Submission Date: September 01, 2022
Revision Date: October 03, 2022
Accteptance Date: October 05, 2022
Authors
S. Rezaei Aderyani
- School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran.
Abstract
In this paper, we use the
Kudryashov methods
to investigate the novel solutions to a nonlinear
time fractional model.
The 3D and
2D figures are depicted for displaying the physical behavior of
travelling solutions
for diverse values of uncertain parameters with constraint conditions. Also,
via an alternative technique, we investigate the existence and uniqueness
of solutions of the governing model and we consider the UHR stability of the obtained solution.
Share and Cite
ISRP Style
S. Rezaei Aderyani, Describing ion sound waves in plasma, Mathematics in Natural Science, 8 (2022), no. 1, 1--17
AMA Style
Rezaei Aderyani S. , Describing ion sound waves in plasma. Math. Nat. Sci. (2022); 8(1):1--17
Chicago/Turabian Style
Rezaei Aderyani, S. . "Describing ion sound waves in plasma." Mathematics in Natural Science, 8, no. 1 (2022): 1--17
Keywords
- NLPDEs
- Kudryashov methods
MSC
References
-
[1]
S. R. Aderyani, R. Saadati, T. Abdeljawad, N. Mlaiki, Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces, Alex. Eng. J., 61 (2022), 10913–10923
-
[2]
O. Gonzalez-Gaxiola, A. Biswas, M. Ekici, S. Khan, Highly dispersive optical solitons with quadratic-cubic law of refractive index by the variational iteration method, J. Opt., 51 (2022), 29–36
-
[3]
K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadehh, K. Dehingia, The Korteweg-de Vries–Caudrey–Dodd–Gibbon dynamical model: Its conservation laws, solitons, and complexiton, J. Ocean Eng. Sci., (2022), 1–9
-
[4]
W. Rui, H. Zhang, Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models, Comput. Appl. Math., 39 (2020), 26 pages
-
[5]
Z. Yu, X. Shi, X. Qiu, J. Zhou, X. Chen, Y. Gou, Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation, Eng. Optim., 53 (2021), 1467–1482