A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions
Volume 3, Issue 1, pp 1--11
http://dx.doi.org/10.22436/mns.03.01.01
Publication Date: July 30, 2019
Submission Date: November 29, 2017
Revision Date: April 01, 2018
Accteptance Date: April 11, 2018
-
1788
Downloads
-
3671
Views
Authors
Stojan Radenovic
- Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Arslan Hojat Ansari
- Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
- Department of Mathematics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
Ali Turab
- Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathum Thani 12121, Thailand.
Muaadh Almahalebi
- Department of Mathematics, Ibn Tofail University, Kenitra, Morocco.
Abstract
In this paper, we will investigate a fixed point theorem for \((\psi ,\varphi
)\)-weak contraction via new functions in generalized ordered metric spaces.
Furthermore, we present an illustrative application in integral equations.
Share and Cite
ISRP Style
Stojan Radenovic, Arslan Hojat Ansari, Ali Turab, Muaadh Almahalebi, A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions, Mathematics in Natural Science, 3 (2018), no. 1, 1--11
AMA Style
Radenovic Stojan, Ansari Arslan Hojat, Turab Ali, Almahalebi Muaadh, A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions. Math. Nat. Sci. (2018); 3(1):1--11
Chicago/Turabian Style
Radenovic, Stojan, Ansari, Arslan Hojat, Turab, Ali, Almahalebi, Muaadh. "A fixed point theorem in ordered \(G\)-metric spaces with its application via new functions." Mathematics in Natural Science, 3, no. 1 (2018): 1--11
Keywords
- \(\Omega \)-distance
- fixed point
- \(G\)-metric space
MSC
References
-
[1]
C. T. Aage, J. N. Salunke, Fixed point for weak contractions in $G$-metric spaces, Appl. Math. E-Notes, 12 (2012), 23--28
-
[2]
M. Abbas, B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262--269
-
[3]
R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized in partially ordered metric space, Appl. Anal., 87 (2008), 109--116
-
[4]
A. H. Ansari, Note on $\varphi$-$\psi$-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications (Payame Noor University), 2014 (2014), 377--380
-
[5]
L. B. Ćirić , A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267--273
-
[6]
L. B. Ćirić , Coincidence and fixed points for maps on topological spaces, Topology Appl., 154 (2007), 3100--3106
-
[7]
L. B. Ćirić, S. Jesić, M. M. Milovanović, J. S. Ume, On the steepest descent approximation method for the zeros of generalized accretive operators, Nonlinear Anal., 69 (2008), 763--769
-
[8]
P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 8 pages
-
[9]
J.-X. Fang, Y. Gao, Common fixed point theorems under strict contractive conditions in Menger space, Nonlinear Anal., 70 (2009), 184--193
-
[10]
L. Gholizadeh, A fixed point theorems in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl., 6 (2013), 244--251
-
[11]
T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379--1393
-
[12]
T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi, Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear Anal., 66 (2007), 2237--2242
-
[13]
N. Hussain, Common fixed point in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., 338 (2008), 1351--1363
-
[14]
O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric space, Math. Japon., 44 (1996), 381--391
-
[15]
M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1--9
-
[16]
H. Kumar Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 1--13
-
[17]
Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorems for mapping on complete $G$-metric space, Fixed Point Theory Appl., 2008 (2008), 12 pages
-
[18]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289--297
-
[19]
Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 10 pages
-
[20]
J. J. Nieto, R. Rodriguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223--239
-
[21]
J. J. Nieto, R. Rodriguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23 (2007), 2205--2212
-
[22]
D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., 195 (2008), 86--93
-
[23]
A. Petrusel, I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc., 134 (2006), 411--418
-
[24]
V. Popa, A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in $G$-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 151--160
-
[25]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435--1443
-
[26]
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683--2696
-
[27]
R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52 (2010), 797--801
-
[28]
W. Shatanawi, Fixed point theory for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces, Fixed Point Theory Appl., 2010 (2010), 9 pages
-
[29]
W. Shatanawi, H. Kumar Nashine, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., 5 (2012), 37--43