On some particular regular Diophantine 3-tuples
Volume 3, Issue 1, pp 29--38
http://dx.doi.org/10.22436/mns.03.01.04
Publication Date: August 02, 2019
Submission Date: November 14, 2018
Revision Date: January 03, 2019
Accteptance Date: January 30, 2019
-
2407
Downloads
-
3855
Views
Authors
O. Ozer
- Department of Mathematics, Faculty of Science and Arts , Kirklareli University, Kirklareli, 39100, Turkey.
Z. C. Sahin
- Department of Mathematics, Faculty of Science and Arts, Suleyman Demirel University, Isparta, Turkey.
Abstract
Diophantine n-tuple where n=3 is called as a Diophantine triple. It means that Diophantine triple is a set of three positive integers satisfying special condition. For example, \(\{a,b,c\}\) is called a \(D(k)\)-Diophantine triple if multiplying of any two different of them plus k is a perfect square integer where k is an integer.
In this work, we take in consideration some kind of regular \(D(\pm 3^3 )\)-Diophantine triples. We demonstrate that such sets can not be extendible to \(D(\pm 3^3 )\)-Diophantine quadruple by using algebraic methods such as classical Pell equation’s solutions, solutions of \(ux^2+ vy^2=w\) Diophantine equations where \(u,v,w \in \mathbb Z\), factorization in the set of integers, and so on. Besides, we obtain some notable characteristic properties for such sets.
Share and Cite
ISRP Style
O. Ozer, Z. C. Sahin, On some particular regular Diophantine 3-tuples, Mathematics in Natural Science, 3 (2018), no. 1, 29--38
AMA Style
Ozer O., Sahin Z. C., On some particular regular Diophantine 3-tuples. Math. Nat. Sci. (2018); 3(1):29--38
Chicago/Turabian Style
Ozer, O., Sahin, Z. C.. "On some particular regular Diophantine 3-tuples." Mathematics in Natural Science, 3, no. 1 (2018): 29--38
Keywords
- Diophantine Triple
- Pell equations
- Diophantine equations
- modular arithmetic
- reciprocity theorem
- Legendre symbol
MSC
References
-
[1]
A. Baker, H. Davenport, The equations $3x^2-2=y^2$ and $8x^2-7=z^2$, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129--137
-
[2]
I. G. Bashmakova, Diophantus of Alexandria: Arithmetics and The Book of Polygonal Numbers, Nauka, Moskow (1974)
-
[3]
A. F. Beardon, M. N. Deshpande, Diophantine triples, The Mathematical Gazette, 86 (2002), 258--260
-
[4]
E. Brown, Sets in which $xy+k$ is Always a Square, Math. Comp., 45 (1985), 613--620
-
[5]
M. N. Deshpande, On interesting family of Diophantine triples, Int. J. Math. Ed. Sci. Tech., 33 (2002), 253--256
-
[6]
L. E. Dickson, History of Theory of Numbers: Diophantine Analysis, Dove Publ., New York (2005)
-
[7]
A. Dujella, A. Jurasić, Some Diophantine Triples and Quadruples for Quadratic Polynomials, J. Comb. Number Theory, 3 (2011), 123--141
-
[8]
P. Fermat, Observations sur Diophante, Oeuvres de Fermat, Paris (1891)
-
[9]
A. Fillipin, Non-extend ability of D(-1) triples of the form $\{1, 10, c\}$, Int. J. Math. Math. Sci., 35 (2005), 2217--2226
-
[10]
Y. Fujita, The D(1)-extensions of D(-1)-triples $\{1, 2, c\}$ and integer points on the attached elliptic curves, Acta Arith., 128 (2007), 349--375
-
[11]
L. Goldmakher, Legendre, Jacobi and Kronecker Symbols Section, Number Theory Lecture Notes, (4 pages)
-
[12]
M. A. Gopalan, V. Sangeetha, M. Somnath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2 (2014), 19--22
-
[13]
M. A. Gopalan, G. Srividhya, Two special Diophantine triples, Diophantus J. Math., 1 (2012), 23--27
-
[14]
M. A. Gopalan, S. Vidhyalakshmi, S. Mallika, Some special non-extendable Diophantine triples, Sch. J. Eng. Tech., 2 (2014), 159--160
-
[15]
M. A. Gopalan, S. Vidhyalaksfmi, Ö. Özer, A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi (2018)
-
[16]
K. S. Kedlaya, Solving constrained Pell equations, Math. Comp., 67 (1998), 833--842
-
[17]
P. Kurur (Instructor), R. Saptharishi (Scribe), Computational Number Theory, Lecture Notes, Quadratic Reciprocity (contd.) Section (3 pages)
-
[18]
R. A. Mollin, Fundamental Number theory with Applications, Chapman \& Hall/CRC, Boca Raton (2008)
-
[19]
Ö. Özer, A Note On The Particular Sets With Size Three, Boundary Field Prob. Comput. Simul. J., 55 (2016), 56--59
-
[20]
Ö. Özer, On The Some Particular Sets, Kirklareli Univer. J. Eng. Sci., 2 (2016), 99--108
-
[21]
Ö. Özer, Some Properties of The Certain Pt Sets, Int. J. Algebra Stat., 6 (2017), 117--130
-
[22]
Ö. Özer, On The Some Non Extandable Regular $P_{-2}$ Sets, Malaysian J. Math. Sci., 12 (2018), 255--266
-
[23]
J. Roberts, Lure of the Integers, Mathematical Association of America, Washington, DC (1992)