Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative
Volume 4, Issue 1, pp 1--12
http://dx.doi.org/10.22436/mns.04.01.01
Publication Date: August 07, 2019
Submission Date: September 22, 2017
Revision Date: January 29, 2019
Accteptance Date: January 30, 2019
-
1896
Downloads
-
3866
Views
Authors
D. Vivek
- Department of Mathematics, P.S.G. College of Arts and Science, Coimbatore-641 014, India.
E. M. Elsayed
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
K. Kanagarajan
- Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, India.
Abstract
In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions for impulsive type integro-differential equations with generalized fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer's fixed point theorem.
\begin{keyword}Integro-differential equations \sep impulsive differential equations \sep generalized fractional derivative \sep existence \sep Ulam-Hyers stablity.
\MSC{26A33\sep 34D10\sep 45N05.}
Share and Cite
ISRP Style
D. Vivek, E. M. Elsayed, K. Kanagarajan, Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative, Mathematics in Natural Science, 4 (2019), no. 1, 1--12
AMA Style
Vivek D., Elsayed E. M., Kanagarajan K., Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative. Math. Nat. Sci. (2019); 4(1):1--12
Chicago/Turabian Style
Vivek, D., Elsayed, E. M., Kanagarajan, K.. "Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative." Mathematics in Natural Science, 4, no. 1 (2019): 1--12
Keywords
- Integro-differential equations
- impulsive differential equations
- generalized fractional derivative
- existence
- Ulam-Hyers stablity
MSC
References
-
[1]
D. D. Bainov, S. G. Hristova, Integral inequalities of Gronwall type for piecewise continuous functions, J. Appl. Math. Stochastic Anal., 10 (1997), 89--94
-
[2]
K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1970--1977
-
[3]
M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary valur problem for implicit differential equations of fractional order, Moroccan J. Pure Appl. Anal., 1 (2015), 22--37
-
[4]
M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Hindawi Publishing Corporation, New York (2006)
-
[5]
D. Dhiman, A. Kumar, G. R. Gautam, Existence of solution to fractional order delay differential equations with impulses, Adv. Math. Models Appl., 2 (2017), 155--165
-
[6]
J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions: A Fixed Point Approch, De Gruyter, Berlin (2013)
-
[7]
K. H. Guan, Q. S. Wang, X. B. He, Oscillation of a pantograph differential equation with impulsive perturbations, Appl. Math. Comput., 219 (2012), 3147--3153
-
[8]
R. Hilfer, Application of fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
-
[9]
K. Karthikeyan, J. J. Trujillo, Existence and uniqueness results for fractional integrodifferential equations with boundary value conditions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4037--4043
-
[10]
U. N. Katugampola, New approach to a genaralized fractional integral, Appl. Math. Comput., 218 (2011), 860--865
-
[11]
U. N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations, arXiv, 2014 (2014), 1--9
-
[12]
U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1--15
-
[13]
E. E. Ndiyo, Existence result for solution of second order impulsive differential inclusion to dynamic evolutionary processes, Amer. J. Appl. Math., 7 (2017), 89--92
-
[14]
N. Nyamoradi, Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math., 14 (2017), 17 pages
-
[15]
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999)
-
[16]
D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2 (2017), 105--112
-
[17]
D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for implicit differential equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2017 (2017), 105--112
-
[18]
J. R. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806--831
-
[19]
J. R. Wang, Y. Zhou, M. Fečkan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389--3405
-
[20]
H. P. Ye, J. M. Gao, Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075--1081
-
[21]
G. L. Zhang, M. H. Song, M. Z. Liu, Asymptotic stability of a class of impulsive delay differential equations, J. Appl. Math., 2012 (2012), 9 pages