Permanence and extinction in a periodic ratio-dependent population system with stage structure
Volume 5, Issue 1, pp 20--28
http://dx.doi.org/10.22436/mns.05.01.03
Publication Date: September 10, 2019
Submission Date: February 18, 2018
Revision Date: January 30, 2019
Accteptance Date: February 28, 2019
-
1235
Downloads
-
2122
Views
Authors
Ahmadjan Muhammadhaji
- College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, People's Republic of China.
Abstract
This paper studies a class of nonautonomous two-species
ratio-dependent population system with stage structure. Some
sufficient conditions on the boundedness, permanence, extinction,
and periodic solution of the system are established by using the
comparison method.
Share and Cite
ISRP Style
Ahmadjan Muhammadhaji, Permanence and extinction in a periodic ratio-dependent population system with stage structure, Mathematics in Natural Science, 5 (2019), no. 1, 20--28
AMA Style
Muhammadhaji Ahmadjan, Permanence and extinction in a periodic ratio-dependent population system with stage structure. Math. Nat. Sci. (2019); 5(1):20--28
Chicago/Turabian Style
Muhammadhaji, Ahmadjan. "Permanence and extinction in a periodic ratio-dependent population system with stage structure." Mathematics in Natural Science, 5, no. 1 (2019): 20--28
Keywords
- Stage-structured ratio-dependent system
- permanence
- extinction
- periodic solution
MSC
References
-
[1]
L. Chen, Models and Research Methods of Mathematical Ecology, Science Press, Beijing (1988)
-
[2]
F. D. Chen, M. S. You, Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey, Nonlinear Anal. Real World Appl., 9 (2008), 207--221
-
[3]
J. G. Cui, L. S. Chen, W. D. Wang, The effect of dispersal on population growth with stage-structure, Comput. Math. Appl., 39 (2000), 91--102
-
[4]
S. Hsu, T. Hwang, Y. Kuang, Rich dynamics of a ratiodependent one prey two predators model, J. Math. Biol., 43 (2001), 377--396
-
[5]
Z. X. Li, L. S. Chen, J. M. Huang, Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage structure, J. Comput. Appl. Math., 233 (2009), 173--187
-
[6]
Z.-H. Ma, Z.-Z. Li, S.-F. Wang, T. Li, F.-P. Zhang, Permanence of a predator-prey system with stage structure and time delay, Appl. Math. Comput., 201 (2008), 65--71
-
[7]
R. M. May, Theoretical Ecology, Principle and Applications, Sounders Press, Philadelphia (1976)
-
[8]
A. Muhammadhaji, R. Mahemuti, Z. D. Teng, Periodic solutions for n-species Lotka-Volterra competitive systems with pure delays, Chin. J. Math. (N.Y.), 2015 (2015), 11 pages
-
[9]
A. Muhammadhaji, Z. D. Teng, X. Abdurahman, Permanence and extinction analysis for a delayed ratio-dependent cooperative system with stage structure, Afr. Mat., 25 (2014), 897--909
-
[10]
Z. Teng, L. Chen, The positive periodic slotion in periodic Kolmogorov type systems with delays, Acta. Math. Appl. Sinica., 22 (1999), 446--456
-
[11]
J. Y. Wang, Q. S. Lu, Z. S. Feng, A nonautonomous predator-prey system with stage structure and double time delays, J. Comput. Appl. Math., 230 (2009), 283--299
-
[12]
D. M. Xiao, W. X. Li, M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14--29
-
[13]
R. Xu, M. A. J. Chaplain, F. A. Davidson, Permanence and periodicity of a delayed ratio-dependent predator-prey model with stage structure, J. Math. Anal. Appl., 303 (2005), 602--621
-
[14]
R. Xu, Z. Ma, The effect of stage-structure on the permanence of a predator-prey system with time delay, Appl. Math. Comput., 189 (2007), 1164--1177
-
[15]
R. Xu, Z. Q. Wang, Periodic solutions of a nonautonomous predator-prey system with stage structure and time delays, J. Comput. Appl. Math., 196 (2006), 70--86
-
[16]
Z. Q. Zhang, J. Wu, Z. C. Wang, Periodic solutions of nonautonomous stage-structured cooperative system, Comput. Math. Appl., 47 (2004), 699--706