Modified exponential function method for the KP-BBM equation
Volume 6, Issue 1, pp 1--7
http://dx.doi.org/10.22436/mns.06.01.01
Publication Date: April 09, 2020
Submission Date: May 06, 2019
Revision Date: October 29, 2019
Accteptance Date: December 04, 2019
-
1460
Downloads
-
2661
Views
Authors
Tolga Akturk
- Department of Mathematics and Science Education, Faculty of Education, Ordu University, Turkey.
Gulnur Yel
- Faculty of Educational Sciences, Final International University, Kyrenia, Mersin 10, Turkey.
Abstract
In this study, the travelling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona- Mahony
equation were obtained by using modified exponential function method. This method provides the
solution of nonlinear partial differential equation by using exponential function. The submitted
solutions are implied in terms of the hyperbolic functions, trigonometric functions. The 2D and
3D graphics and contour simulations of these solution functions were obtained by using computational program.
Share and Cite
ISRP Style
Tolga Akturk, Gulnur Yel, Modified exponential function method for the KP-BBM equation, Mathematics in Natural Science, 6 (2020), no. 1, 1--7
AMA Style
Akturk Tolga, Yel Gulnur, Modified exponential function method for the KP-BBM equation. Math. Nat. Sci. (2020); 6(1):1--7
Chicago/Turabian Style
Akturk, Tolga, Yel, Gulnur. "Modified exponential function method for the KP-BBM equation." Mathematics in Natural Science, 6, no. 1 (2020): 1--7
Keywords
- The nonlinear equations
- Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation (KP-BBM)
- the modified exponential function method (MEFM)
MSC
References
-
[1]
T. Akturk, Y. Gurefe, H. Bulut, New function method to the (n + 1)-dimensional nonlinear problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 234--239
-
[2]
T. Akturk, Y. Gurefe, H. Bulut, An application of the new function method to the Zhiber-Shabat equation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 271--274
-
[3]
Z. Avazzadeh, M. H. Heydari, C. Cattani, Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels, The European Physical Journal Plus, 134 (2019), 13 pages
-
[4]
H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177--183
-
[5]
H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation, AIP Conf. Proc., 1798 (2017), 1--9
-
[6]
H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 14 pages
-
[7]
H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720--728
-
[8]
H. M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 8 pages
-
[9]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, Investigation of various travelling wave solutions to the extended (2 + 1)- dimensional quantum ZK equation, Eur. Phys. J. Plus, 132 (2017), 8 pages
-
[10]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 141--150
-
[11]
H. M. Baskonus, T. A. Sulaiman, H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical Fibers, Optical and Quantum Electronics, 50 (2018), 12 pages
-
[12]
J. L. Bona, On solitary waves and their role in the evolution of long waves, Applications of Nonlinear Analysis in the Physical Sciences, 1981 (1981), 183--205
-
[13]
H. Bulut, T. Akturk, Y. Gurefe, Travelling wave solutions of the (N + 1)-dimensional sine-cosine-Gordon equation, AIP Conf. Proc., 1637 (2014), 145--149
-
[14]
H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional burgers equation, Turk. J. Math. Comput. Sci., 5 (2016), 1--7
-
[15]
C. Cattani, Multiscale analysis of wave propagation in composite materials, Math. Model. Anal., 8 (2003), 267--282
-
[16]
C. Cattani, Harmonic wavelet solutions of the Schrodinger equation, Int. J. Fluid Mech. Res., 30 (2003), 463--472
-
[17]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod, Eur. Phys. J. Plus, 133 (2018), 11 pages
-
[18]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, Opt. Quant. Electron., 50 (2018), 11 pages
-
[19]
Y. Chen, Z. Yan, New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method, Chaos Solitons Fractals, 26 (2005), 399--406
-
[20]
A. Ciancio, H. M. Baskonus, T. A. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure, Indian J. Phys., 92 (2018), 1281--1290
-
[21]
F. Dusunceli, New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model, Adv. Math. Phys., 2019 (2019), 9 pages
-
[22]
F. Dusunceli, Solutions for the Drinfeld-Sokolov equation using an IBSEFM method, MSU J. of Sci., 6 (2018), 505--510
-
[23]
F. Dusunceli, New exact solutions for the (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation, Erzincan University Journal of Science and Technology, 12 (2019), 463--468
-
[24]
S. M. El-Shaboury, M. K. Ammar, W. M. Yousef, Analytical solutions of the relative orbital motion in unperturbed and in J2-perturbed elliptic orbits, Appl. Math. Nonlinear Sci., 2 (2017), 403--414
-
[25]
E. I. Eskitas¸c¸ioglu, M. B. Aktas, H. M. Baskonus, New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105--112
-
[26]
J. H. He, X. H .Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700--708
-
[27]
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani, A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402--415
-
[28]
B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, In Sov. Phys. Dokl., 15 (1970), 539--541
-
[29]
C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241--253
-
[30]
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248--2253
-
[31]
C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sinica, 54 (2005), 2505--2509
-
[32]
S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control Optim., 39 (2001), 1677--1696
-
[33]
P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167--173
-
[34]
Y. Pandir, Y. Gurefe, U. Kadak, E. Misirli, Classification of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal., 2012 (2012), 16 pages
-
[35]
Y. Pandir, Y. Gurefe, E. Misirli, A new approach to Kudryashov’s method for solving some nonlinear physical models, Int. J. Phys. Sci., 7 (2012), 2860--2866
-
[36]
D. Rani, V. Mishra, C. Cattani, Numerical inversion of Laplace transform based on Bernstein operational matrix, Math. Methods Appl. Sci., 41 (2018), 9231--9243
-
[37]
D. Rani, V. Mishra, C. Cattani, Numerical inverse Laplace transform for solving a class of fractional differential equations, Symmetry, 11 (2019), 20 pages
-
[38]
J. J. Rushchitsky, C. Cattani, E. V. Terletskaya, Wavelet analysis of the evolution of a solitary wave in a composite material, Int. Appl. Mech., 40 (2004), 311--318
-
[39]
G. Shen, Y. Sun, Y. Xiong, New travelling-wave solutions for Dodd-Bullough equation, J. Appl. Math., 2013 (2013), 5 pages
-
[40]
Y. Sun, New travelling wave solutions for Sine-Gordon equation, J. Appl. Math., 2014 (2014), 4 pages
-
[41]
T. A. Sulaiman, H. Bulut, A. Yokus, H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647--656
-
[42]
T. A. Sulaiman, A. Yokus, N. Gulluoglu, H. M. Baskonus, Regarding the Numerical and Stability Analysis of the Sharma-Tasso-Olver Equation, ITM Web Conf., 22 (2018), 9 pages
-
[43]
F. Xu, Application of Exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett., 372 (2008), 252--257
-
[44]
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 17 pages
-
[45]
G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method, Opt. Quant. Electron., 49 (2017), 10 pages
-
[46]
G. Yel, H. M. Baskonus, H. Bulut, Regarding on the some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031--1039
-
[47]
A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, Internat. J. Modern Phys., 32 (2018), 12 pages
-
[48]
A. Yokus, S. Gulbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35--41
-
[49]
A. Yokus, T. A. Sulaiman, M. T. Gulluoglu, H. Bulut, Stability analysis, numerical and exact solutions of the (1 + 1)- dimensional NDMBBM equation, ITM Web Conf., 22 (2018), 10 pages
-
[50]
A. Yokus, M. Tuz, An application of a new version of (G′/G)-expansion method, In AIP Conf. Proc., 1798 (2017), 7 pages
-
[51]
A. M. Wazwaz, The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations, Chaos Solitons Fractals, 38 (2008), 1505--1516