Application of the modified exponential function method to Vakhnenko-Parkes equation
Volume 6, Issue 1, pp 8--14
http://dx.doi.org/10.22436/mns.06.01.02
Publication Date: April 11, 2020
Submission Date: August 01, 2019
Revision Date: September 27, 2019
Accteptance Date: December 06, 2019
-
1705
Downloads
-
3428
Views
Authors
Gulnur Yel
- Faculty of Educational Sciences, Final International University, Kyrenia, Mersin 10, Turkey.
Tolga Akturk
- Department of Mathematics and Science Education, Faculty of Education, Ordu University, Turkey.
Abstract
In this paper, we submit some new travelling wave solutions for the Vakhnenko--Parkes equation via
the modified exponential function method. The obtained solutions include hyperbolic, exponential,
trigonometric function solutions. Regarding these solutions, the 2D and 3D graphs and contour simulations are presented.
Share and Cite
ISRP Style
Gulnur Yel, Tolga Akturk, Application of the modified exponential function method to Vakhnenko-Parkes equation, Mathematics in Natural Science, 6 (2020), no. 1, 8--14
AMA Style
Yel Gulnur, Akturk Tolga, Application of the modified exponential function method to Vakhnenko-Parkes equation. Math. Nat. Sci. (2020); 6(1):8--14
Chicago/Turabian Style
Yel, Gulnur, Akturk, Tolga. "Application of the modified exponential function method to Vakhnenko-Parkes equation." Mathematics in Natural Science, 6, no. 1 (2020): 8--14
Keywords
- The nonlinear evolution equations
- the Vakhnenko--Parkes equation
- the modified exponential function method
MSC
References
-
[1]
T. Akturk, Y. Gurefe, H. Bulut, New function method to the (n + 1)-dimensional nonlinear problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 234--239
-
[2]
T. Akturk, Y. Gurefe, H. Bulut, An application of the new function method to the Zhiber-Shabat equation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 271--274
-
[3]
Z. Avazzadeh, M. H. Heydari, C. Cattani, Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels, The European Physical Journal Plus, 134 (2019), 13 pages
-
[4]
H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177--183
-
[5]
H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation, AIP Conf. Proc., 2017 (1798), 1--9
-
[6]
H. M. Baskonus, Complex soliton solutions to the Gilson-Pickering model, Axioms, 8 (2019), 14 pages
-
[7]
H. M. Baskonus, H. Bulut, Analytical studies on the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-BonaMahony equation defined by seismic sea waves, Waves Random Complex Media, 25 (2015), 576--586
-
[8]
H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720--728
-
[9]
H. M. Baskonus, H. Bulut, A. Atangana, On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 8 pages
-
[10]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, Investigation of various travelling wave solutions to the extended (2 + 1)- dimensional quantum ZK equation, Eur. Phys. J. Plus, 132 (2017), 8 pages
-
[11]
H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 141--150
-
[12]
H. M. Baskonus, T. A. Sulaiman, H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical Fibers, Optical and Quantum Electronics, 50 (2018), 12 pages
-
[13]
H. Bulut, Application of the modified exponential function method to the Cahn-Allen equation, American Institute of Phys., 1798 (2017), 8 pages
-
[14]
H. Bulut, T. Akturk, Y. Gurefe, Travelling wave solutions of the (N + 1)-dimensional sine-cosine-Gordon equation, AIP Conf. Proc., 1637 (2014), 145--149
-
[15]
H. Bulut, T. Akturk, G. Yel, An application of the modified expansion method to nonlinear partial differential equation, Turk. J. Math. Comput. Sci., 10 (2018), 202--206
-
[16]
H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional burgers equation, Turk. J. Math. Comput. Sci., 5 (2016), 1--7
-
[17]
C. Cattani, Multiscale analysis of wave propagation in composite materials, Math. Model. Anal., 8 (2003), 267--282
-
[18]
C. Cattani, Harmonic wavelet solutions of the Schrodinger equation, Int. J. Fluid Mech. Res., 30 (2003), 463--472
-
[19]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan’s rod, Eur. Phys. J. Plus, 133 (2018), 11 pages
-
[20]
C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, Opt. Quant. Electron., 50 (2018), 11 pages
-
[21]
Y. Chen, Z. Yan, New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method, Chaos Solitons Fractals, 26 (2005), 399--406
-
[22]
A. Ciancio, H. M. Baskonus, T. A. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure, Indian J. Phys., 92 (2018), 1281--1290
-
[23]
F. Dusunceli, Solutions for the Drinfeld-Sokolov equation using an IBSEFM method, MSU J. of Sci., 6 (2018), 505--510
-
[24]
F. Dusunceli, New exact solutions for the (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation, Erzincan University Journal of Science and Technology, 12 (2019), 463--468
-
[25]
F. Dusunceli, New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model, Adv. Math. Phys., 2019 (2019), 9 pages
-
[26]
S. M. El-Shaboury, M. K. Ammar, W. M. Yousef, Analytical solutions of the relative orbital motion in unperturbed and in J2-perturbed elliptic orbits, Appl. Math. Nonlinear Sci., 2 (2017), 403--414
-
[27]
E. I. Eskitaşçıoğlu, M. B. Aktas, H. M. Baskonus, New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105--112
-
[28]
M. Foroutan, J. Manafian, A. Ranjbaran, Lump solution and its interaction to (3 + 1)-D potential-YTSF equation, Nonlinear Dyn., 92 (2018), 2077--2092
-
[29]
Y. Gu, W. Yuan, N. Aminakbari, Q. Jiang, Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces, 2017 (2017), 6 pages
-
[30]
J. H. He, X. H .Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700--708
-
[31]
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani, A computational method for solving stochastic Itˆo-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402--415
-
[32]
C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241--253
-
[33]
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248--2253
-
[34]
D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitz´eica type equations in nonlinear optics, Optik, 149 (2017), 439--446
-
[35]
C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sinica, 54 (2005), 2505--2509
-
[36]
F. Majid, H. Triki, T. Hayat, O. M. Aldossary, A. Biswas, Solitary wave solutions of the Vakhnenko-Parkes equation, Nonlinear Anal. Model. Control, 17 (2012), 60--66
-
[37]
P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167--173
-
[38]
Y. Pandir, Y. Gurefe, U. Kadak, E. Misirli, Classification of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal., 2012 (2012), 16 pages
-
[39]
Y. Pandir, Y. Gurefe, E. Misirli, A new approach to Kudryashov’s method for solving some nonlinear physical models, Int. J. Phys. Sci., 7 (2012), 2860--2866
-
[40]
D. Rani, V. Mishra, C. Cattani, Numerical inversion of Laplace transform based on Bernstein operational matrix, Math. Methods Appl. Sci., 41 (2018), 9231--9243
-
[41]
D. Rani, V. Mishra, C. Cattani, Numerical inverse Laplace transform for solving a class of fractional differential equations, Symmetry, 11 (2019), 20 pages
-
[42]
H. Roshid, Md. R. Kabir, R. C. Bhowmik, B. K. Datta, Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(φ(ζ))-expansion method, SpringerPlus, 3 (2014), 10 pages
-
[43]
J. J. Rushchitsky, C. Cattani, E. V. Terletskaya, Wavelet analysis of the evolution of a solitary wave in a composite material, Int. Appl. Mech., 40 (2004), 311--318
-
[44]
C. T. Sendi, J. Manafian, H. Mobasseri, M. Mirzazadeh, Q. Zhou, A. Bekir, Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics, Nonlinear Dyn., 95 (2019), 669--684
-
[45]
T. A. Sulaiman, H. Bulut, A. Yokus, H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647--656
-
[46]
T. A. Sulaiman, A. Yokus, N. Gulluoglu, H. M. Baskonus, Regarding the Numerical and Stability Analysis of the Sharma-Tasso-Olver Equation, ITM Web Conf., 22 (2018), 9 pages
-
[47]
Y. Sun, New travelling wave solutions for Sine-Gordon equation, J. Appl. Math., 2014 (2014), 4 pages
-
[48]
G. Shen, Y. Sun, Y. Xiong, New travelling-wave solutions for Dodd-Bullough equation, J. Appl. Math., 2013 (2013), 5 pages
-
[49]
V. O. Vakhnenko, E. J. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11 (1998), 1457--1464
-
[50]
V. O. Vakhnenko, E. J. Parkes, Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation, Adv. Math. Phys., 2016 (2016), 39 pages
-
[51]
A. M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633--640
-
[52]
E. W. Weisstein, CRC concise encyclopedia of mathematics, CRC Press, (2002)
-
[53]
F. Xu, Application of Exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett., 372 (2008), 252--257
-
[54]
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 17 pages
-
[55]
G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method, Opt. Quant. Electron., 49 (2017), 10 pages
-
[56]
G. Yel, H. M. Baskonus, H. Bulut, Regarding on the some novel exponential travelling wave solutions to the Wu-Zhang system arising in nonlinear water wave model, Indian J. Phys., 93 (2019), 1031--1039
-
[57]
A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, Internat. J. Modern Phys., 32 (2018), 12 pages
-
[58]
A. Yokus, S. Gulbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35--41
-
[59]
A. Yokus, T. A. Sulaiman, M. T. Gulluoglu, H. Bulut, Stability analysis, numerical and exact solutions of the (1 + 1)- dimensional NDMBBM equation, ITM Web Conf., 22 (2018), 10 pages
-
[60]
A. Yokus, M. Tuz, An application of a new version of (G0/G)-expansion method, In AIP Conf. Proc., 1798 (2017), 7 pages
-
[61]
Y. Yujian, S. Junquan, S. Shoufeng, D. Yanmei, New coherent structures of the Vakhnenko–Parkes equation, Results in Physics, 2 (2012), 170--174