$\mathcal{SUP}$-Hesitant fuzzy ideals of $\Gamma$-semigroups
    
        
            
                Volume 26, Issue 2, pp 148--161
            
                        
                http://dx.doi.org/10.22436/jmcs.026.02.05
            
            
                                    
            
            
                
                    Publication Date: November 05, 2021
                
                                
                    Submission Date: June 05, 2021
                
                
                                
                    Revision Date: June 21, 2021
                
                
                                Accteptance Date: September 17, 2021
                            
                                 
        
            
            
                
                    
                        - 
                            1425
                            Downloads
                        
- 
                            3724
                            Views
                        
 
                
             
         
     
    
    
    Authors
    
                P. Julatha
                
        
                                        - Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
                                        A. Iampan
                
        
                                        - Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
                                    
        
    Abstract
    As a generalization of the concepts of interval-valued fuzzy ideals and hesitant fuzzy ideals of \(\Gamma\)-semigroups, the concept of \(\mathcal{SUP}\)-hesitant fuzzy ideals is introduced. Characterizations of \(\mathcal{SUP}\)-hesitant fuzzy ideals are discussed in terms of sets, fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, and hesitant fuzzy sets. Further, \(\mathcal{SUP}\)-hesitant fuzzy translations of \(\mathcal{SUP}\)-hesitant fuzzy ideals of \(\Gamma\)-semigroups are introduced and their related properties are investigated.
 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                    P. Julatha, A. Iampan, $\mathcal{SUP}$-Hesitant fuzzy ideals of $\Gamma$-semigroups, Journal of Mathematics and Computer Science, 26 (2022), no. 2, 148--161
         
        
            AMA Style
                                                                                    Julatha P., Iampan A., $\mathcal{SUP}$-Hesitant fuzzy ideals of $\Gamma$-semigroups. J Math Comput SCI-JM. (2022); 26(2):148--161
         
        
        
            Chicago/Turabian Style
                                                                                    Julatha, P., Iampan, A.. "$\mathcal{SUP}$-Hesitant fuzzy ideals of $\Gamma$-semigroups." Journal of Mathematics and Computer Science, 26, no. 2 (2022): 148--161
         
     
            
    Keywords
    
                -  \(\Gamma\)-semigroup
-  \(\mathcal{SUP}\)-hesitant fuzzy ideal
-  interval-valued fuzzy ideal
-  (\mathcal{SUP}\)-hesitant fuzzy translation
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                M. Y. Abbasi, A. F. Talee,  S. A. Khan, K. Hila, A hesitant fuzzy set approach to ideal theory in $\Gamma$-semigroups, Adv. Fuzzy Syst., 2018 (2018), 6 pages
                            
            
        
                - 
            [2]
            
                                M. A. Ansari, I. A. H. Masmali, On fuzzy soft $\Gamma$-hyperideals over left almost $\Gamma$-semihypergroups, Appl. Math. Sci. (Ruse), 7 (2013), 2781--2793
                            
            
        
                - 
            [3]
            
                                K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87--96
                            
            
        
                - 
            [4]
            
                                A. Dey, T. Senapati, M. Pal, G. Chen, A novel approach to hesitant multi-fuzzy soft set based decision-making, AIMS Math., 5 (2020), 1985--2008
                            
            
        
                - 
            [5]
            
                                H. Harizavi, Y. B. Jun, $\mathrm{SUP}$-hesitant fuzzy quasi-associative ideals of BCI-algebras, Filomat, 34 (2020), 4189--4197
                            
            
        
                - 
            [6]
            
                                U. Jittburus, P. Julatha, New generalizations of hesitant and interval-valued fuzzy  ideals of semigroups, Adv. Math. Sci. J., 10 (2021), 2199--2212
                            
            
        
                - 
            [7]
            
                                Y. B. Jun, K. J. Lee, S.-Z. Song, Hesitant fuzzy bi-ideals in semigroups, Commun. Korean Math. Soc., 30 (2015), 143--154
                            
            
        
                - 
            [8]
            
                                D. Mandal, Hesitant Fuzzy h-ideals of $\Gamma$-hemirings, J. New Theory, 31 (2020), 48--54
                            
            
        
                - 
            [9]
            
                                P. Mosrijai, A. Satirad, A. Iampan, New types of hesitant fuzzy sets on UP-algebras, Math. Morav., 22 (2018), 29--39
                            
            
        
                - 
            [10]
            
                                G. Muhiuddin, H. Harizavi, Y. B. Jun, Ideal theory in BCK/BCI-algebras in the frame of hesitant fuzzy set theory, Appl. Appl. Math., 15 (2020), 337--352
                            
            
        
                - 
            [11]
            
                                G. Muhiuddin, Y. B. Jun, Sup-hesitant fuzzy subalgebras and its translations and extensions, Ann. Commun. Math., 2 (2019), 48--56
                            
            
        
                - 
            [12]
            
                                M. K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft Comput., 12 (2008), 891--900
                            
            
        
                - 
            [13]
            
                                M. K. Sen, N. K. Saha, On $\Gamma$-semigroup-I, Bull. Calcutta Math. Soc., 78 (1986), 180--186
                            
            
        
                - 
            [14]
            
                                T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 23 pages
                            
            
        
                - 
            [15]
            
                                T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497--518
                            
            
        
                - 
            [16]
            
                                A. F. Talee, M. Y. Abbasi, S. A. Khan, Hesitant fuzzy sets approach to ideal theory in ternary semigroups, Int. J. Appl. Math., 31 (2018), 527--539
                            
            
        
                - 
            [17]
            
                                V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529--539
                            
            
        
                - 
            [18]
            
                                V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, In: IEEE International Conference on Fuzzy Systems (Jeju, Korea South), 2009 (2009), 1378--1382
                            
            
        
                - 
            [19]
            
                                M. Uçkun, M. A.Öztürk, Y. B. Jun, Intuitionistic fuzzy sets in $\Gamma$-semigroups, Bull. Korean Math. Soc., 44 (2007), 359--367
                            
            
        
                - 
            [20]
            
                                L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1695), 338--353
                            
            
        
                - 
            [21]
            
                                L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning--I, Information Sci., 8 (1975), 199--249