\(\mathfrak{F}\)-Bipolar metric spaces and fixed point theorems with applications
    
        
            
                Volume 26, Issue 2, pp 184--195
            
                        
                http://dx.doi.org/10.22436/jmcs.026.02.08
            
            
                                    
            
            
                
                    Publication Date: November 05, 2021
                
                                
                    Submission Date: August 03, 2021
                
                
                                
                    Revision Date: September 06, 2021
                
                
                                Accteptance Date: September 25, 2021
                            
                                 
        
            
            
                
                    
                        - 
                            1555
                            Downloads
                        
- 
                            3501
                            Views
                        
 
                
             
         
     
    
    
    Authors
    
                S. Rawat
        
                                        - Department of Mathematics, H.N.B. Garhwal University, Uttarakhand-246174, India.
                                        R. C. Dimri
        
                                        - Department of Mathematics, H.N.B. Garhwal University, Uttarakhand-246174, India.
                                        A. Bartwal
                
        
                                        - Department of Mathematics, H.N.B. Garhwal University, Uttarakhand-246174, India.
                                    
        
    Abstract
    In this paper, we propose a new generalization of metric spaces by the unification of two novel notions, namely  \(\mathfrak{F}\)-metric spaces and bipolar metric spaces, under the name \(\mathfrak{F}\)-bipolar metric spaces. Further, in this newly generalized notion we provide a binary topology and prove some fixed point results. As applications of our result, we prove the existence and uniqueness of solution of integral equation and the existence of a unique solution in homotopy theory. We also give some non-trivial examples to vindicate our claims. Our fixed point results extend several results in the existing literature.  
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                                            S. Rawat, R. C. Dimri, A. Bartwal, \(\mathfrak{F}\)-Bipolar metric spaces and fixed point theorems with applications, Journal of Mathematics and Computer Science, 26 (2022), no. 2, 184--195
         
        
            AMA Style
                                                                                                            Rawat S., Dimri R. C., Bartwal A., \(\mathfrak{F}\)-Bipolar metric spaces and fixed point theorems with applications. J Math Comput SCI-JM. (2022); 26(2):184--195
         
        
        
            Chicago/Turabian Style
                                                                                                            Rawat, S., Dimri, R. C., Bartwal, A.. "\(\mathfrak{F}\)-Bipolar metric spaces and fixed point theorems with applications." Journal of Mathematics and Computer Science, 26, no. 2 (2022): 184--195
         
     
            
    Keywords
    
                -  \(\mathfrak{F}\)-Bipolar metric spaces
-  fixed point
-  completeness
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                I. A. Bakhtin, The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ul'yanovsk. Gos. Ped. Inst., 30 (1989), 26--37
                            
            
        
                - 
            [2]
            
                                S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133--181
                            
            
        
                - 
            [3]
            
                                A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196--204
                            
            
        
                - 
            [4]
            
                                A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31--37
                            
            
        
                - 
            [5]
            
                                S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5--11
                            
            
        
                - 
            [6]
            
                                M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1--72
                            
            
        
                - 
            [7]
            
                                M. Jleli, B. Samet, On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., 20 (2018), 20 pages
                            
            
        
                - 
            [8]
            
                                S. N. Jothi, P. Thangavelu, Topology between two sets, J. Math. Sci. Comput. Appl., 1 (2011), 95--107
                            
            
        
                - 
            [9]
            
                                G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 13 pages
                            
            
        
                - 
            [10]
            
                                S. G. Matthews, Partial metric topology, The New York Academy of Sciences. Ann. N. Y. Acad. Sci., 1994 (1994), 183--197
                            
            
        
                - 
            [11]
            
                                A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362--5373
                            
            
        
                - 
            [12]
            
                                A. Mutlu, K. Özkan, U. Gürdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., 10 (2017), 655--667
                            
            
        
                - 
            [13]
            
                                A. Mutlu, K. Özkan, U. Gürdal, Fixed Point Theorems For Multivalued Mappings On Bipolar Metric Spaces, Fixed Point Theory, 21 (2020), 271--280
                            
            
        
                - 
            [14]
            
                                A. Mutlu, K. Özkan, U. Gürdal, Locally and Weakly Contractive Principle in Bipolar Metric Spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379--388
                            
            
        
                - 
            [15]
            
                                K. Özkan, U. Gürdal, The Fixed Point Theorem and Characterization of Bipolar Metric Completeness, Konuralp J. Math., 8 (2020), 137--143
                            
            
        
                - 
            [16]
            
                                K.Özkan, U. Gürdal, A. Mutlu, A Generalization of Amini-Harandi's Fixed Point Theorem with an Application to Nonlinear Mapping Theory, Fixed Point Theory, 21 (2020), 707--714
                            
            
        
                - 
            [17]
            
                                K.Özkan, U. Gürdal, A. Mutlu, Caristi's and Downing-Kirk's Fixed Point Theorems on Bipolar Metric Spaces, Fixed Point Theory, 22 (2021), 785--794
                            
            
        
                - 
            [18]
            
                                S. Shukla, Partial Rectangular Metric Spaces and Fixed Point Theorems, Sci. World J., 2014 (2014), 7 pages