New distance in cone \(S\)-metric spaces and common fixed point theorems
Volume 26, Issue 4, pp 368--378
http://dx.doi.org/10.22436/jmcs.026.04.05
Publication Date: January 06, 2022
Submission Date: August 14, 2021
Revision Date: November 05, 2021
Accteptance Date: November 29, 2021
Authors
Z. M. Fadail
- Department of Mathematics, Faculty of Education, Thamar University, 87246, Thamar, Republic of Yemen.
A. Savic
- School of Electrical and Computer Engineering, Academy of Technical and Art Applied Studies , Belgrade, Serbia.
S. Radenovic
- Faculty of Mechanical Engineering , University of Belgrade, Kraljice Marije 16, Belgrade, Serbia.
Abstract
In this work, we define a new distance called \(c_s\)-distance in a cone \(S\)-metric space with some properties. Then, we prove some common fixed point and fixed point theorems for self-mappings with this distance. After that, we obtain some common fixed point and fixed point results in the setting
of cone \(S\)-metric spaces. We give some examples to support our work.
Share and Cite
ISRP Style
Z. M. Fadail, A. Savic, S. Radenovic, New distance in cone \(S\)-metric spaces and common fixed point theorems, Journal of Mathematics and Computer Science, 26 (2022), no. 4, 368--378
AMA Style
Fadail Z. M., Savic A., Radenovic S., New distance in cone \(S\)-metric spaces and common fixed point theorems. J Math Comput SCI-JM. (2022); 26(4):368--378
Chicago/Turabian Style
Fadail, Z. M., Savic, A., Radenovic, S.. "New distance in cone \(S\)-metric spaces and common fixed point theorems." Journal of Mathematics and Computer Science, 26, no. 4 (2022): 368--378
Keywords
- Cone \(S\)-metric spaces
- \(c_s\)-distance
- common fixed points
- fixed points
MSC
References
-
[1]
S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, S. Radenovc, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst., 9 (2019), 93--121
-
[2]
K. Anthony Singh, M. R. Singh, Some fixed point theorems of cone Sb-metric space, J. Indian Acad. Math., 40 (2018), 255--272
-
[3]
K. Anthony Singh, M. R. Singh, Some coupled fixed point theorems in cone Sb-metric space, J. Math. Comput. Sci., 10 (2020), 891--905
-
[4]
D. Dhamodharan, R. Krishnakumar, Cone S-Metric Space and Fixed Point Theorems of Contractive Mappings, Ann. Pure Appl. Math., 14 (2017), 237--243
-
[5]
G. Jungck, S. Rakočević, S. Radojevic, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 2009 (2009), 13 pages
-
[6]
J. K. Kim, S. Sedghi, N. Shobkolaei, Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl., 19 (2015), 751--759
-
[7]
N. Priyobarta, Y. Rohen, N. Mlaiki, Complex valued Sb-metric spaces, J. Math. Anal., 8 (2017), 13--24
-
[8]
M. U. Rahman, M. Sarwar, Fixed point results of Altman integral type mappings in $S$-metric spaces, Int. J. Anal. Appl., 10 (2016), 58--63
-
[9]
Y. Rohen, T. Došenović, S. Radenovic, A note on the paper "A fixed point theorem in $S_b$-metric spaces", Filomat, 31 (2017), 3335--3346
-
[10]
G. S. Saluja, Fixed point theorems on cone S-metric spaces using implicit relation, CUBO, 22 (2020), 273--288
-
[11]
G. S. Saluja, Some fixed point results under contractive type mappings in cone $S_b$-metric spaces, Palest. J. Math., 10 (2021), 547--561
-
[12]
S. Sedghi, N. V. Dung, Fixed point theorems on $S$-metric space, Mat. Vesnik, 66 (2014), 113--124
-
[13]
S. Sedghi, A. Gholidahneh, K. P. R. Rao, Common Fixed Point of Two R-Weakly Commuting Mappings in $S_b$-Metric Spaces, Math. Sci. Lett., 6 (2017), 249--253
-
[14]
S. Sedghi, M. M. Rezaee, T. Došenović, S. Radenovic, Common fixed point theorems for contractive mappings satisfying $\Phi$-maps in $S$-metric spaces, Acta Univ. Sapientiae Math., 8 (2016), 298--311
-
[15]
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point in $S$-metric spaces, Mat. Vesnik, 64 (2012), 258--266
-
[16]
S. Sedghi, N. Shobe, T. Došenovic, Fixed point results in $S$-metric spaces, Nonlinear Funct. Anal. Appl., 20 (2015), 55--67
-
[17]
N. Souayah, N. Mlaiki, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 16 (2016), 131--139
-
[18]
N. Tas, N.Özgür, New generalized fixed point results on $S_b$-metric spaces, Konuralp J. Math., 9 (2021), 24--32
-
[19]
N. Van Dung, N. T. Hieu, S. Radojević, Fixed point theorems for $g$-monotone maps on partially ordered $S$-metric spaces, Filomat, 28 (2014), 1885--1898
-
[20]
N. Yilmaz Özgür, N. Tas, Some fixed point theorems on $S$-metric spaces, Mat. Vesnik, 69 (2017), 39--52