Comparison of Two Methods for Solving Fuzzy Differential Equations Based on Euler Method and Zadeh's Extension
-
2573
Downloads
-
5224
Views
Authors
H. Saberi Najafi
- Department of Mathematics, Faculty of Sciences, Guilan University, P. O. Box 41335-1914, Rasht, Iran Computer Center, Guilan University, Rasht, Iran
F. Ramezani Sasemasi
- Department of Mathematics, Islamic Azad University of Lahijan
S. Sabouri Roudkoli
- Department of Mathematics, Islamic Azad University of Lahijan
S. Fazeli Nodehi
- Department of Mathematics, Islamic Azad university of Lahijan
Abstract
In this paper, two important methods which apply for solving Fuzzy differential equations are compared. These methods are:
1. Zadeh extension principal
2. Standard Euler method
The methods are compared by numerical examples.Also in each case by approximating the errors,the converges of the methods will be considered.
The results are shown in tables and figures.
Share and Cite
ISRP Style
H. Saberi Najafi, F. Ramezani Sasemasi, S. Sabouri Roudkoli, S. Fazeli Nodehi, Comparison of Two Methods for Solving Fuzzy Differential Equations Based on Euler Method and Zadeh's Extension, Journal of Mathematics and Computer Science, 2 (2011), no. 2, 295--306
AMA Style
Saberi Najafi H., Ramezani Sasemasi F., Sabouri Roudkoli S., Fazeli Nodehi S., Comparison of Two Methods for Solving Fuzzy Differential Equations Based on Euler Method and Zadeh's Extension. J Math Comput SCI-JM. (2011); 2(2):295--306
Chicago/Turabian Style
Saberi Najafi, H., Ramezani Sasemasi, F., Sabouri Roudkoli, S., Fazeli Nodehi, S.. "Comparison of Two Methods for Solving Fuzzy Differential Equations Based on Euler Method and Zadeh's Extension." Journal of Mathematics and Computer Science, 2, no. 2 (2011): 295--306
Keywords
- Fuzzy differential equations
- Zadeh’s extension
- Euler method.
MSC
References
-
[1]
M. Ma, M. Friedman, A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133--138
-
[2]
Y. Chalco-Canoa, H. Roman-Flore, Comparation between some approaches to solve fuzzy differential equations, Fuzzy Sets and Systems, 160 (2009), 1517--1527
-
[3]
M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106 (1999), 35--48
-
[4]
M. Z. Ahmad, M. K. Hasan, A New Approach for Computing Zadeh’s Extension Principle, MATEMATIKA, 26 (2010), 71--81
-
[5]
C. Carlsson, R. Fuller, P. Majlender, An extension principle for interactive fuzzy numbers, In Proceedings of the Fourth International Symposium of Hungarian Researchers on Computational Intelligence (Budapest), 2003 (2003), 113--118
-
[6]
M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552--558
-
[7]
O. Solaymani Fard, A Numerical Scheme for Fuzzy Cauchy Problems, Journal of Uncertain Systems, 3 (2009), 307--314
-
[8]
E. Babolian, S. Abbasbandy, M. Alavi, Numerical solution of fuzzy differential inclusion by Euler method, J. Sci. I. A. U. (JSIAU), 18 (2009), 60--65
-
[9]
D. N. Georgiou, I. E. Kougias, ON CAUCHY PROBLEMS FOR FUZZY DIFFERENTIAL EQUATIONS, International Journal of Mathematics and Mathematical Sciences, 15 (2004), 799--805
-
[10]
A. Khastan, F. Bahrami, K. Ivaz, SOLVING HIGHER-ORDER FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY, ROMAI J., 5 (2009), 85--87
-
[11]
T. Allahviranloo, N. Ahmady, E. Ahmady, Two Step Method for Fuzzy Differential Equations, International Mathematical Forum, 1 (2006), 823--832
-
[12]
P. Diamond, P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 35 (1990), 241--249
-
[13]
M. Friedman, A. Kandel, Fundamentals of Computer Numerical Analysis, CRC Press, Boca Raton (1994)
-
[14]
O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301--317
-
[15]
E. P. Klement, M. L. Puri, D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A, 407 (1986), 171--182
-
[16]
W. Congxin, M. Ming, Embedding problem of fuzzy number spaces: Part 1, Fuzzy Sets and Systems, 44 (1991), 33--38
-
[17]
Y. Chalco-Cano, H. Román-Flores, On the new solution of fuzzy differential equations, Chaos Solitons Fractals, 38 (2006), 112--119
-
[18]
O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal., 64 (2006), 895--900
-
[19]
H. Roman-Flores, L. Barros, R. Bassanezi, A note on the Zadeh’s extensions, Fuzzy Sets and Systems, 117 (2001), 327--331
-
[20]
R. Goetscbel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31--43
-
[21]
O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301--317
-
[22]
M. Ming, M. Friedman, A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133--138
-
[23]
M. L. Purl, D. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552--558
-
[24]
M. L. Purl, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409--422
-
[25]
H. Román-Flores, L. Barros, R. Bassanezi, A note on Zadeh’s extension principle, Fuzzy Sets and Systems, 117 (2001), 327--331
-
[26]
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338--353
-
[27]
S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Systems Man Cybernet., 2 (1972), 30--34
-
[28]
D. Dubios, H. Prade, Towards fuzzy differential calculus. III. Differentiation, Fuzzy Sets and Systems, 8 (1982), 225--233
-
[29]
W. Congxin, M. Ming, Embedding problem of fuzzy number spaces: part II, Fuzzy Sets and Systems, 45 (1992), 189--202