Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and \(k\)-Fibonacci numbers
Volume 27, Issue 2, pp 105--117
http://dx.doi.org/10.22436/jmcs.027.02.02
Publication Date: April 13, 2022
Submission Date: December 08, 2021
Revision Date: December 21, 2021
Accteptance Date: January 15, 2022
Authors
A. Amourah
- Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan.
B. A. Frasin
- Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan.
S. R. Swamy
- Department of Computer Science and Engineering, RV College of Engineering, Bengaluru, 560 059, Karnataka, India.
Y. Sailaja
- Department of Mathematics, RV College of Engineering, Bengaluru, 560 059, Karnataka, India.
Abstract
Using the Al-Oboudi type operator, we present and investigate two special
families of bi-univalent functions connected with the activation function \(%
\phi (s)=\ 2/(1+e^{-s}),\,s\in \mathbb{R}\) and \(k\)-Fibonacci numbers. We
derive the bounds on initial coefficients and the Fekete-Szego
functional for functions of the type \(g_{\phi }(z)=z+\sum
\limits_{j=2}^{\infty }\phi (s)d_{j}z^{j}\) in these introduced families.
Furthermore, we present interesting observations of the results investigated.
Share and Cite
ISRP Style
A. Amourah, B. A. Frasin, S. R. Swamy, Y. Sailaja, Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and \(k\)-Fibonacci numbers, Journal of Mathematics and Computer Science, 27 (2022), no. 2, 105--117
AMA Style
Amourah A., Frasin B. A., Swamy S. R., Sailaja Y., Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and \(k\)-Fibonacci numbers. J Math Comput SCI-JM. (2022); 27(2):105--117
Chicago/Turabian Style
Amourah, A., Frasin, B. A., Swamy, S. R., Sailaja, Y.. "Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activation function and \(k\)-Fibonacci numbers." Journal of Mathematics and Computer Science, 27, no. 2 (2022): 105--117
Keywords
- Fekete-Szego inequality
- regular function
- Sigmoid function
- Fibonacci numbers
- bi-univalent function
MSC
References
-
[1]
I. Aldawish, T. Al-Hawary, B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8 (2020), 12 pages
-
[2]
T. Al-Hawary, A. Amourah and B.A. Frasin, Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. (3), 27 (2021), 12 pages
-
[3]
F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Sci., 2004 (2004), 1429--1436
-
[4]
Ş. Altınkaya, S. G. Hamidi, J. M. Jahangiri, S. Yalçın, Inclusion properties for bi-univalent functions of complex order defined by combining of Faber polynomial expansions and Fibonacci numbers, An. Univ. Oradea Fasc. Mat., 27 (2020), 21--30
-
[5]
Ş. Altınkaya, S. Yalçın, S. Çakmak, A subclass of bi-Univalent functions based on the Faber polynomial expansions and the Fibonacci numbers, Mathematics, 160 (2019), 9 pages
-
[6]
A. Amourah, T. Al-Hawary, B. A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order $\alpha +i\beta $, Afr. Mat., 32 (2021), 1059--1066
-
[7]
A. Amourah, B. A. Frasin, T. Abdeljawad, Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces, 2021 (2021), 7 pages
-
[8]
I. T. Awolere, A. T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, Khayyam J. Math., 5 (2019), 140--149
-
[9]
D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, Academic Press, New York--London (1980)
-
[10]
D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31 (1986), 70--77
-
[11]
S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 352 (2014), 479--484
-
[12]
P. L. Duren, Univalent functions, Springer-Verlag,, New York (1983)
-
[13]
J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., 61 (2011), 2605--2613
-
[14]
J. Dziok, R. K. Raina, J. Sokół, On $\alpha $-Convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Compt., 218 (2011), 996--1002
-
[15]
S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative, Mathematics, 8 (2020), 13 pages
-
[16]
U. A. Ezeafulukwe, M. Darus, O. A. Fadipe-Joseph, On analytic properties of a sigmoid function, Int. J. Math. Comput. Sci., 13 (2018), 171--178
-
[17]
O. A. Fadipe-Joseph, B. B. Kadir, S. E. Akinwumi, E. O. Adeniran, Polynomial bounds for a class of univalent function involving sigmoid function, Khayyam J. Math., 4 (2018), 88--101
-
[18]
O. A. Fadipe-Joseph, A. T. Oladdaipo, A. U. Ezeafulukwe, Modified sigmoid function in univalent function theory, Int. J. Math. Sci. Eng. Appl., 7 (2013), 313--317
-
[19]
S. Falcon, A. Plaza, On the Fibonacci $k$-numbers, Chaos Solitons Fractals, 32 (2007), 1615--1624
-
[20]
M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., 8 (1933), 85--89
-
[21]
P. Filipponi, A. F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, In: Applications of Fibonacci Numbers, 4 (1991), 99--108
-
[22]
P. Filipponi, A. F. Horadam, Second derivative sequence of Fibonacci and Lucas polynomials, Fibonacci Quart., 31 (1993), 194--204
-
[23]
B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569--1573
-
[24]
B. A. Frasin, S. R. Swamy, I. Aldawish, A comprehensive family of biunivalent functions defined by $k$-Fibonacci numbers, J. Funct. Spaces, 2021 (2021), 7 pages
-
[25]
B. A. Frasin, S. R. Swamy, J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to $k$-Fibonacci numbers involving modified sigmoid activation function, Afr. Mat., 32 (2021), 631--643
-
[26]
H. Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae Math., 10 (2018), 70--84
-
[27]
H. Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Certain subclasses of bi-univalent functions related to $k$-Fibonacci numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68 (2019), 1909--1921
-
[28]
S. Haykin, Neural networks: a comprehensive foundation, Second ed., an inprint of Pearson Education, India (1999)
-
[29]
M. G. Khan, B. Ahmad, G. Mirigusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of modified sigmoid functions to a class of starlike functions, J. Funct. Spaces, 2020 (2020), 8 pages
-
[30]
M. Lewin, On a coefficients problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63--68
-
[31]
N. Magesh, C. Abirami, V. K. Balaji, Certain classes of bi-univalent functions related to Shell-like curves connected with Fibonacci numbers, Afr. Mat., 32 (2021), 185--198
-
[32]
N. Magesh, P. K. Mamatha, S. R. Swamy, J. Yamini, Horadam polynomial coefficient estimates for a class of $\lambda$-bi-pseudo-starlike functions, Presented in National Conference on Recent Trends in Mathematics and its Applications (NCRTMA-2019), 2019 (2019), 7 pages
-
[33]
M. O. Oluwayemi, O. A. Fadipe-Joseph, U. A. Ezeafulukwe, Certain subclass of univalent functions involving modified sigmoid function, J. Phys.: Conf. Series, 1212 (2019), 6 pages
-
[34]
N. Y. Özgür, J. Sokół, On starlike functions connected with $k$-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (2015), 249--258
-
[35]
C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Gottingen (1975)
-
[36]
F. M. Sakar, M. A. Aydogan, Initial bounds for certain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam polynomials, J. Qual. Measur. Anal., 15 (2019), 89--100
-
[37]
G. S. Sălăgean, Subclasses of univalent functions, Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 1983 (1983), 362--372
-
[38]
S. Scardapane, S. V. Vaerenbergh, A. Hussain, A. Uncini, Complex-valued neural networks with non-parametric activation functions, arXiv, 2018 (2018), 10 pages
-
[39]
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188--1192
-
[40]
S. R. Swamy, S. Bulut, Y. Sailaja, Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function, Hacet. J. Math. Stat., 51 (2021), 710--720
-
[41]
S. R. Swamy, P. K. Mamatha, N. Magesh, J. Yamini, Certain subclasses of bi-univalent functions defined by Sălăgean operator associated with the $(p,q)$-Lucas polynomials, Adv. Math. Sci. J., 9 (2020), 6071--6025
-
[42]
S. R. Swamy, J. Nirmala, Y. Sailaja, Some special families of holomorphic and Al-Oboudi type bi-univalent functions associated with $(m,n)$-Lucas polynomials involving modified sigmoid activation function, South East Asian J. Math. Math. Sci., 17 (2021), 1--16
-
[43]
S. R. Swamy, J. Nirmala, Y. Sailaja, Some special families of holomorphic and Al-Oboudi type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function, Electron. J. Math. Anal. Appl., 10 (2022), 29--41
-
[44]
S. R. Swamy, A. K. Wanas, Y. Sailaja, Some special families of holomorphic and Sălăgean type bi-univalent functions associated with $(m,n)$-Lucas polynomials, Comm. Math. Appl., 11 (2020), 563--574
-
[45]
D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A, 5 (1984), 559--568
-
[46]
T. T. Wang, W. P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (2012), 95--103