Approximate solution of the special type differential equation of higher order using Taylor's series
Volume 27, Issue 2, pp 131--141
http://dx.doi.org/10.22436/jmcs.027.02.04
Publication Date: April 13, 2022
Submission Date: December 19, 2021
Revision Date: January 17, 2022
Accteptance Date: February 01, 2022
Authors
A. P. Selvan
- Department of Mathematics, Kings Engineering College, Irungattukottai, Sriperumbudur, Chennai, 602 117, Tamil Nadu, India.
S. Sabarinathan
- Department of Mathematics, SRM Institute of Science \(\&\) Technology, Kattankulthur, 603 203, Tamil Nadu, India.
A. Selvam
- Department of Mathematics, SRM Institute of Science \(\&\) Technology, Kattankulthur, 603 203, Tamil Nadu, India.
Abstract
We study the approximate solution of the special type \(n^{th}\) order linear differential equation by applying initial and boundary conditions using Taylor's series formula. That is, we prove the sufficient condition for the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of the special type linear differential equation of higher order with initial and boundary conditions using Taylor's series formula.
Share and Cite
ISRP Style
A. P. Selvan, S. Sabarinathan, A. Selvam, Approximate solution of the special type differential equation of higher order using Taylor's series, Journal of Mathematics and Computer Science, 27 (2022), no. 2, 131--141
AMA Style
Selvan A. P., Sabarinathan S., Selvam A., Approximate solution of the special type differential equation of higher order using Taylor's series. J Math Comput SCI-JM. (2022); 27(2):131--141
Chicago/Turabian Style
Selvan, A. P., Sabarinathan, S., Selvam, A.. "Approximate solution of the special type differential equation of higher order using Taylor's series." Journal of Mathematics and Computer Science, 27, no. 2 (2022): 131--141
Keywords
- Mittag-Leffler-Hyers-Ulam stability
- Mittage-Leffler-Hyers-Ulam-Rassias stability
- linear differential equations
- initial and boundary conditions
- Taylor's series formula
MSC
- 34K20
- 26D10
- 44A10
- 39B82
- 34A40
- 39A30
References
-
[1]
M. R. Abdollahpour, R. Aghayari, M. T. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437 (2016), 605--612
-
[2]
M. Almahalebi, A. Chahbi, S. Kabbaj, A fixed point approach to the stability of a bi-cubic functional equations in 2-Banach spaces, Palest. J. Math., 5 (2016), 220--227
-
[3]
Q. H. Alqifiary, S. M. Jung, Hyers-Ulam stability of second-order linear differential equations with boundary conditions, SYLWAN, 158 (2014), 289--301
-
[4]
C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373--380
-
[5]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64--66
-
[6]
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223--237
-
[7]
N. Brillouët-Belluot, J. Brzdȩk, K. Ciepliński, On some recent developments in Ulam's type stability, Abstr. Appl. Anal., 2012 (2012), 41 pages
-
[8]
M. Burger, N. Ozawa, A. Thom,, On Ulam stability, Israel J. Math., 193 (2013), 109--129
-
[9]
L. Cadariu, L. Gavruta, P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012 (2012), 10 pages
-
[10]
G. Choi, S.-M. Jung, Invariance of Hyers-Ulam stability of linear differential equations and its applications, Adv. Difference Equ., 2015 (2015), 14 pages
-
[11]
P. Gavruta, S.-M. Jung, Y. G. Li, Hyers-Ulam stability for second order linear differential equations with boundary conditions, Electron. J. Differential Equations, 2011 (2011), 5 pages
-
[12]
J. Huang, Q. H. Alqifiary, Y. Li, On the generalized superstability of $n$th-order linear differential equations with initial conditions, Publications De L'Institut Mathematique, Nouvelle serie, 98 (2015), 243--249
-
[13]
J. H. Huang, S. M. Jung, Y. J. Li, On Hyers-Ulam stability of Non-linear differential equations, Bull. Korean Math. Soc., 52 (2015), 685--697
-
[14]
J. H. Huang, Y. J. Li, Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., 426 (2015), 1192--1200
-
[15]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222--224
-
[16]
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equation in nonlinear analysis, Springer, New York (2011)
-
[17]
S.-M. Jung, J. Roh, J. Lee, Optimal Hyers-Ulam's constant for the linear differential equations, J. Inequal. Appl., 2016 (2016), 7 pages
-
[18]
T. X. Li, A. Zada, S. Faisal, Hyers--Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 9 (2016), 2070--2075
-
[19]
R. Murali, A. Bodaghi, A. Ponmana Selvan, Stability for the third order linear ordinary differential equation, Int. J. Math. Comput., 30 (2019), 87--92
-
[20]
R. Murali, A. Ponmana Selvan, On the generalized Hyers-Ulam stability of linear ordinary differential equations of higher order, Int. J. Pure Appl. Math., 117 (2017), 317--326
-
[21]
R. Murali, A. Ponmana Selvan, Hyers-Ulam stability of $n$th order differential equation, Contemp. Stud. Discrete Math., 2 (2018), 45--50
-
[22]
R. Murali, A. Ponmana Selvan, Hyers-Ulam-Rassias stability for the linear ordinary differential equation of third order, Kragujevac J. Math., 42 (2018), 579--590
-
[23]
R. Murali, A. Ponmana Selvan, Ulam stability of a LCR electric circuit with electromotive force, Int. J. Math. Appl., 6 (2018), 62--66
-
[24]
R. Murali, A. Ponmana Selvan, Hyers-Ulam stability of $n$th order linear differential equation, Kragujevac J. Math., 38 (2019), 553--566
-
[25]
R. Murali, A. Ponmana Selvan, C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math., 5 (2019), 766--780
-
[26]
R. Murali, A. Ponmana Selvan, Hyers--Ulam stability of a free and forced vibrations, Kragujevac J. Math., 44 (2020), 299--312
-
[27]
R. Murali, M. J. Rassias, V. Vithya, The general solution and stability of nonadecic functional equation in matrix normed spaces, Malaya J. Mat., 5 (2017), 416--427
-
[28]
M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993), 259--270
-
[29]
M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., 14 (1997), 141--146
-
[30]
M. Onitsuka, T. Shoji, Hyers-Ulam stability of first order homogeneous linear differential equations with a real-valued co-efficient, Appl. Math. Lett., 63 (2017), 102--108
-
[31]
T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297--300
-
[32]
K. Ravi, R. Murali, A. Ponmana Selvan, Hyers--Ulam stability of $n$th order linear differential equation with initial and boundary condition, Asian J. Math. Comput. Res., 11 (2016), 201--207
-
[33]
K. Ravi, R. Murali, A. Ponmana Selvan, Ulam stability of a general $n$th order linear differential equation with constant coefficients, Asian J. Math. Comput. Res., 11 (2016), 61--68
-
[34]
K. Ravi, J. M. Rassias, S. Pinelas, S. Suresh, General solution and stability of Quattuordecic functional equation in quasi-$beta$-normed spaces, Adv. pure Math., 6 (2016), 921--941
-
[35]
K. Ravi, J. M. Rassias, B. V. Senthil Kumar, Ulam-Hyers stability of undecic functional equation in quasi-$beta$-normed spaces fixed point method, Tbilisi Math. Sci., 9 (2016), 83--103
-
[36]
S. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space valued differential equation $y^{'} (t) = \lambda \ y(t)$, Bull. Korean Math. Soc., 39 (2002), 309--315
-
[37]
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publisheres, New York-London (1960)