On globally asymptotic stability of a fourth-order rational difference equation
Volume 27, Issue 2, pp 176--183
http://dx.doi.org/10.22436/jmcs.027.02.07
Publication Date: April 13, 2022
Submission Date: October 23, 2021
Revision Date: November 08, 2021
Accteptance Date: December 08, 2021
Authors
L. Sh. Aljoufi
- Deanship of Common First Year, Jouf University, P.O. Box 2014, Sakaka, Jouf, Saudi Arabia.
- Basic Sciences Research Unit, Jouf University, P.O. Box 2014, Sakaka, Jouf, Saudi Arabia.
A. M. Ahmed
- Department of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt.
S. A. Mohammady
- Department of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka, Jouf, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Helwan University, Helwan 11795, Egypt.
Abstract
In this paper, we investigate the behavior of solutions of the difference
equation
\[
x_{n+1}=\frac{\alpha \left( x_{n-2}+x_{n-3}\right) +\left( \alpha -1\right)
x_{n-2}x_{n-3}}{x_{n-2}x_{n-3}+\alpha },\;\ \ \ n=0,1,2,\ldots,
\]
where the initial conditions \(x_{-3},x_{-2},x_{-1},x_{0}\)
are arbitrary non-negative real numbers and the parameter \(\alpha \in
\lbrack 1,\infty ).\) More precisely, we study the boundedness, stability, and
oscillation of the solutions of this equation.
Share and Cite
ISRP Style
L. Sh. Aljoufi, A. M. Ahmed, S. A. Mohammady, On globally asymptotic stability of a fourth-order rational difference equation, Journal of Mathematics and Computer Science, 27 (2022), no. 2, 176--183
AMA Style
Aljoufi L. Sh., Ahmed A. M., Mohammady S. A., On globally asymptotic stability of a fourth-order rational difference equation. J Math Comput SCI-JM. (2022); 27(2):176--183
Chicago/Turabian Style
Aljoufi, L. Sh., Ahmed, A. M., Mohammady, S. A.. "On globally asymptotic stability of a fourth-order rational difference equation." Journal of Mathematics and Computer Science, 27, no. 2 (2022): 176--183
Keywords
- Difference equations
- stability
- oscillation
MSC
References
-
[1]
H. A. Abd El-Hamid, H. M. Rezk, A. M. Ahmed, G. AlNemer, M. Zakarya, H. A. El Saify, Some dynamic Hilbert-type inequalities for two variables on time scales, J. Inequal. Appl., 2021 (2021), 21 pages
-
[2]
R. Abu-Saris, C. Cinar, I. Yalcinkaya, On the asymptotic stability of $x_{n+1}=\dfrac{a+x_{n}x_{n-k}}{x_{n}+x_{n-k}}$, Comput. Math. Appl., 56 (2008), 1172--1175
-
[3]
A. M. Ahmed, On the dynamics of a higher-order rational difference equation, Discrete Dyn. Nat. Soc., 2011 (2011), 8 pages
-
[4]
A. M. Ahmed, On the Dynamics Of $x_{n+1}=\frac{a+x_{n-1}x_{n-k}}{x_{n-1}+x_{n-k}}$, J. Appl. Math. Inform., 32 (2014), 599--607
-
[5]
A. M. Ahmed, H. M. El-Owaidy, A. Hamza, A. M. Youssef, On the recursive sequence $x_{n+1}=\dfrac{a+bx_{n-1}}{A+Bx_{n}^{k}}$, J. Appl. Math. Inform., 27 (2009), 275--289
-
[6]
A. M. Ahmed, A. M. Youssef, A solution form of a class of higher-order rational difference equations, J. Egyptian Math. Soc., 21 (2013), 248--253
-
[7]
G. AlNemer, M. Kenawy, M. Zakarya, C. Cesarano, H. M. Rezk, Generalizations of Hardy's Type Inequalities via Conformable Calculus, Symmetry, 13 (2021), 14 pages
-
[8]
C. Cinar, On the Positive Solutions of the Difference Equation $x_{n+1}=\dfrac{x_{n-1}}{1+x_{n}x_{n-1}}$, Appl. Math. Comput., 150 (2004), 21--24
-
[9]
C. Cinar, On the Difference Equation $x_{n+1}=\dfrac{x_{n-1}}{-1+x_{n}x_{n-1}}$, Appl. Math. Comput., 158 (2004), 813--816
-
[10]
C. Cinar, On the Positive Solutions of the Difference Equation $x_{n+1}=\dfrac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Appl. Math. Comput., 156 (2004), 587--590
-
[11]
C. Cinar, R. Karatas, I. Yalcinkaya, On Solutions of the Difference Equation $x_{n+1}=\dfrac{x_{n-3}}{-1+x_{n}x_{n-1}x_{n-2}x_{n-3}}$, Math. Bohem., 132 (2007), 257--261
-
[12]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Qualitative Behavior of Higher Order Difference Equation, Soochow J. Math., 33 (2007), 861--873
-
[13]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the Difference Equation $x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+...+a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+...+b_{k}x_{n-k}}$, Math. Bohem, 133 (2008), 133--147
-
[14]
H. El-Owaidy, A. Ahmed, A. Youssef, On the Dynamics of $x_{n+1}=\dfrac{bx_{n-1}^{2}}{A+Bx_{n-2}}$, Rostock. Math. Kolloq., 59 (2005), 11--18
-
[15]
H. El-Owaidy, A. Ahmed, A. Youssef, The Dynamics of the Recursive Sequence $x_{n+1}=\dfrac{\alpha x_{n-1}}{\beta +\gamma x_{n-2}^{p}}$, Appl. Math. Lett., 18 (2005), 1013--1018
-
[16]
E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the Difference Equations $x_{n+1}=\dfrac{\alpha x_{n-k}}{\beta +\gamma\prod_{i=0}^{k}x_{n-i}}$, J. Conc. Appl. Math., 5 (2007), 101--113
-
[17]
E. M. Elsayed, Dynamics of a rational recursive sequence, Int. J. Difference Equ., 4 (2009), 185--200
-
[18]
E. M. Elsayed, Behavior of a Rational Recursive Sequences, Stud. Univ. Babes-Bolyai Math., 56 (2011), 27--42