Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with \(\phi_{p}\)-Laplacian operator
Volume 27, Issue 2, pp 184--195
http://dx.doi.org/10.22436/jmcs.027.02.08
Publication Date: April 13, 2022
Submission Date: July 26, 2021
Revision Date: October 02, 2021
Accteptance Date: February 15, 2022
Authors
T. Q. S. Abdullah
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China.
- Department of Mathematics, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen.
H. Xiao
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China.
G. Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China.
W. Al-Sadi
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China.
Abstract
This study focused on the existence and uniqueness(EU) and stability of the solution for a system of fractional differential equations(FDEs) via Atangana-Baleanu derivative in the sense of Caputo (ABC) with \(\phi_{p}\)-Laplacian operator. Green function \( \mathcal{G}^{\eth}(t,s)\), \(m<\eth<m+1\), \(m\geq4\) used for converting the suggested problem to an integral equation. Guo-Krasnoselskii theorem used for proving the EU of solution for the suggested problem. The stability of the solution was derived by Hyers-Ulam stability method(HUS). One illustrative example is used for manifesting the results.
Share and Cite
ISRP Style
T. Q. S. Abdullah, H. Xiao, G. Huang, W. Al-Sadi, Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with \(\phi_{p}\)-Laplacian operator, Journal of Mathematics and Computer Science, 27 (2022), no. 2, 184--195
AMA Style
Abdullah T. Q. S., Xiao H., Huang G., Al-Sadi W., Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with \(\phi_{p}\)-Laplacian operator. J Math Comput SCI-JM. (2022); 27(2):184--195
Chicago/Turabian Style
Abdullah, T. Q. S., Xiao, H., Huang, G., Al-Sadi, W.. "Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with \(\phi_{p}\)-Laplacian operator." Journal of Mathematics and Computer Science, 27, no. 2 (2022): 184--195
Keywords
- ABC-Derivative
- Riemann-Liuoville fractional derivative
- Green function
- existence and uniqueness
- Hyers-Ulam stability
MSC
References
-
[1]
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 11 pages
-
[2]
B. Ahmed, J. J. Nieto, Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 2011 (2011), 9 pages
-
[3]
M. Almushaira, F. Liu, Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrodinger equations, SN Partial Differ. Equ. Appl., 1 (2020), 29 pages
-
[4]
M. Almushaira, F. Liu, A Fast Conservative Scheme for the Space Fractional Nonlinear Schrödinger Equation with Wave Operator, J. Math. Study, 54 (2021), 407--426
-
[5]
W. Al-Sadi, A. Alkhazan, T. Q. S. Abdullah, M. Al-Soswa, Stability and existence the solution for a coupled system of hybrid fractional differential equation with uniqueness, Arab. J. Basic Appl. Sci., 28 (2021), 340--350
-
[6]
W. Al-Sadi, M. Hussein, T. Q. S. Abdullah, Existence and stability criterion for the results of fractional order $\Phi$p-Laplacian operator boundary value problem, Comput. Methods Differ. Equ., 9 (2021), 1042--1058
-
[7]
W. Al-Sadi, H. Zhenyou, A. Alkhazzan, Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity, J. Taibah Univ. Sci., 13 (2019), 951--960
-
[8]
A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136 (2020), 38 pages
-
[9]
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, 2016 (2016), 8 pages
-
[10]
K. Balachandran, J. Y. Park, J. J. Trujillo, Controllability of nonlinear fractional dynamical systems, Nonlinear Anal., 75 (2012), 1919--1926
-
[11]
D. Baleanu, B. Shiri, Collocation methods for fractional differential equations involving non-singular kernel, Chaos Solitons Fractals, 116 (2018), 136--145
-
[12]
A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. M. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solitons Fractals, 140 (2020), 9 pages
-
[13]
M. Caputo, Linear modles of dissipation whose $Q$ is almost frequenty independent--II, J. R. Astr. Soc., 13 (1967), 529--539
-
[14]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Differ. Appl., 1 (2015), 73--85
-
[15]
A. M. A. El-Sayed, S. Z. Rida, Y. A. Gaber, Dynamical of curative and preventive treatments in a two-stage plant disease model of fractional order, Chaos Solitons Fractals, 137 (2020), 11 pages
-
[16]
O. Guner, A. Bekir, The Exp-function method for solving nonlinear space--time fractional differential equations in mathematical physics, J. Assoc. Arab Univ. Basic Appl. Sci., 24 (2017), 277--282
-
[17]
D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston (2014)
-
[18]
R. Hilfer, Application of fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
-
[19]
H. Jafari, D. Baleanu, H. Khan, R. A. Khan, A. Khan, Existence criterion for the solutions of fractional order $p$-Laplacian boundary value problems, Bound. Value Probl., 2015 (2015), 10 pages
-
[20]
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16--20
-
[21]
H. Khan, W. Chen, H. G. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with $p$-Laplacian in Banach space, Math. Methods Appl. Sci., 41 (2018), 3430--3440
-
[22]
H. Khan, F. Jarad, T. Abdeljawad, A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos Solitons Fractals, 129 (2019), 56--61
-
[23]
A. Khan, H. Khan, J. Gomez-Aguilar, T. Abdeljawad,, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422--427
-
[24]
H. Khan, Y. J. Li, W. Chen, D. Baleanu, A. Khan, Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with $p$-Laplacian operator, Bound. Value Probl., 2017 (2017), 16 pages
-
[25]
Y. H. Li, Existence of positive solutions for fractional differential equation involving integral boundary conditions with $p$-Laplacian operator, Adv. Difference Equ., 2017 (2017), 11 pages
-
[26]
D. F. Luo, Q. x. Zhu, Z. G. Luo, An averaging principle for stochastic fractional differential equations with time-delays, Appl. Math. Lett., 105 (2020), 8 pages
-
[27]
J.-H. Mai, Devaney's chaos implies existence of $s$--scrambled sets, Proc. Amer. Math. Soc., 132 (2004), 2761--2767
-
[28]
D. D. Min, L. S. Liu, Y. H. Wu, Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions, Bound. Value Probl., 2018 (2018), 18 pages
-
[29]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
-
[30]
M. Saqib, I. Khan, S. Shafie, Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms, Adv. Difference Equ., 2019 (2019), 18 pages
-
[31]
S. Q. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804--812