Coefficient functionals for a class of bounded turning functions connected to three leaf function
Volume 28, Issue 3, pp 213--223
http://dx.doi.org/10.22436/jmcs.028.03.01
Publication Date: June 26, 2022
Submission Date: December 03, 2021
Revision Date: December 18, 2021
Accteptance Date: December 29, 2021
Authors
G. Murugusundaramoorthy
- School of Advanced Sciences, Vellore Institute of Technology, Vellore , India.
M. G. Khan
- Institute of Numerical Sciencies, Kohat University of Science and Technology, Kohat, Pakistan.
B. Ahmad
- Government Degree College Mardan HED KP, Mardan, 23200, Pakistan.
V. K. Mashwani
- Institute of Numerical Sciencies , Kohat University of Science and Technology, Kohat, Pakistan.
T. Abdeljawad
- Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, 111586, Saudi Arabia.
- Department of Medical Research , China Medical University, Taichung, 40402, Taiwan.
Z. Salleh
- Department of Mathematics, Feculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kaula Nerus, 21030, Terengganu, Malaysia.
Abstract
In this article, we define the class of bounded turning functions connected
with three leaf function to investigate results for the estimates of four
initial coefficients, Fekete-Szegö functional, the second-order Hankel
determinant and Zalcman conjecture and these results are shown to be sharp.
Furthermore, we estimate the bounds of the third-order Hankel determinants
for this class and for its 2-fold and 3-fold symmetric functions. Finally we
evaluate the sharp Krushkal inequality for the functions in this class.
Share and Cite
ISRP Style
G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, V. K. Mashwani, T. Abdeljawad, Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, Journal of Mathematics and Computer Science, 28 (2023), no. 3, 213--223
AMA Style
Murugusundaramoorthy G., Khan M. G., Ahmad B., Mashwani V. K., Abdeljawad T., Salleh Z., Coefficient functionals for a class of bounded turning functions connected to three leaf function. J Math Comput SCI-JM. (2023); 28(3):213--223
Chicago/Turabian Style
Murugusundaramoorthy, G., Khan, M. G., Ahmad, B., Mashwani, V. K., Abdeljawad, T., Salleh, Z.. "Coefficient functionals for a class of bounded turning functions connected to three leaf function." Journal of Mathematics and Computer Science, 28, no. 3 (2023): 213--223
Keywords
- Analytic functions
- three leaf function
- subordination
- Hankel determinant
- invex set
- Zalcman conjuncture
- Krushkal inequality
MSC
References
-
[1]
M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open. Math., 17 (2019), 1615--1630
-
[2]
K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory. Appl., 6 (2007), 1--7
-
[3]
D. Bansal, J. Sokól, Zalcman conjecture for some subclass of analytic functions, J. Frac. Cal. Appl., 8 (2001), 1--5
-
[4]
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467--474
-
[5]
N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc.,, 45 (2019), 213--232
-
[6]
N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Serivasatava, Starlike functions related to the Bell numbers, Symmetry,, 2019 (2019), 11 pages
-
[7]
J. Dzoik, R. K. Raina, J. Sokól, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Modelling, 57 (2013), 1203--1211
-
[8]
S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, In: Mathematical Analysis I: Approximation theory, 2020 (2020), 173--184
-
[9]
W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3), 18 (1968), 77--94
-
[10]
S. Islam, M. G. Khan, B. Ahmad, M. Arif, R. Chinram, Q-Extension of starlike functions subordinated with a trigonometric sine function, Mathematics, 10 (2020), 16 pages
-
[11]
S. Kanas, D. Răducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183--1196
-
[12]
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc.,, 20 (1969), 8--12
-
[13]
M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, R. Chinram, Applications of Mittag-Leffer type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, 2021 (2021), 9 pages
-
[14]
M. G. Khan, B. Ahmad. G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of modified Sigmoid functions to a class of starlike functions, J. Funct. Spaces, 2020 (2020), 8 pages
-
[15]
M. G. Khan, B. Ahmad. J. Sokól, Coefficient problems in a class of functions with bounded turning associated with sine funtion, Eur. J. Pure. Appl. Math., 14 (2021), 53--64
-
[16]
M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functional for a class of bounded turning functions related to modified sigmoid function, AIMS Math., 7 (2021), 3133--3149
-
[17]
S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv, 2014 (2014), 19 pages
-
[18]
R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225--230
-
[19]
W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc.,, 104 (1988), 741--744
-
[20]
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated exponential function, Bull. Malays. Math. Sci. Soc.,, 38 (2015), 365--386
-
[21]
J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math., 22 (1976), 337--346
-
[22]
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1976), 108--112
-
[23]
C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Gottingen (1975)
-
[24]
R. K. Raina, J. Sokól, On Coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427--1433
-
[25]
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505--510
-
[26]
K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27 (2016), 923--939
-
[27]
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry,, 2 (2020), 12 pages
-
[28]
L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 2021 (2021), 12 pages
-
[29]
J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101--105
-
[30]
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327--344
-
[31]
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 9 pages
-
[32]
H. M. Srivastava, Ş. Altınkaya, S. Yalcin, Hankel determinat for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503--516
-
[33]
H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal.,, 22 (2021), 511--526
-
[34]
L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79--104
-
[35]
D. M. Wilkes, S. D. Morgera, F. Noor, M. H. Hayes, A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitzplus-Hankel matrix, IEEE Transactions on Signal Processing, 39 (1991), 2146--2148