Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions
Authors
A. Hassan
- Department of Mathematics, Shah Abdul Latif University, Khairpur-66020, Pakistan.
A. R. Khan
- Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan.
F. Mehmood
- Department of Mathematics, Dawood University of Engineering and Technology, M. A Jinnah Road, Karachi-74800, Pakistan.
M. Khan
- Department of Mathematics, Dawood University of Engineering and Technology, M. A Jinnah Road, Karachi-74800, Pakistan.
Abstract
We would like to state well-known Ostrowski inequality via \(\phi\)-\(\lambda\)-convex by using the Fuzzy Reimann integrals. In addition, we establish some Fuzzy Ostrowski type inequalities for the class of functions whose derivatives in absolute values at certain powers are \(\phi\)-\(\lambda\)-convex by Holder's and power mean inequalities. We are introducing very first time that the class of \(\phi\)-\(\lambda\)-convex function, which is the generalization of many important classes including class of \(h\)-convex, Godunova-Levin \(s\)-convex, \(s\)-convex in the \(2^{\rm nd}\) kind and hence contains convex functions. It also contains class of \(P\)-convex and class of Godunova-Levin. In this way we also capture the results with respect to convexity of functions.
Share and Cite
ISRP Style
A. Hassan, A. R. Khan, F. Mehmood, M. Khan, Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions, Journal of Mathematics and Computer Science, 28 (2023), no. 3, 224--235
AMA Style
Hassan A., Khan A. R., Mehmood F., Khan M., Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions. J Math Comput SCI-JM. (2023); 28(3):224--235
Chicago/Turabian Style
Hassan, A., Khan, A. R., Mehmood, F., Khan, M.. "Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions." Journal of Mathematics and Computer Science, 28, no. 3 (2023): 224--235
Keywords
- Ostrowski inequality
- convex functions
- fuzzy sets
MSC
- 26A33
- 26A51
- 26D15
- 26D99
- 47A30
- 33B10
References
-
[1]
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071--1076
-
[2]
A. Arshad, A. R. Khan, Hermite–Hadamard–Fejer Type Integral Inequality for s−p-Convex Functions of Several Kinds, Transylv. J. Math. Mech., 11 (2019), 25--40
-
[3]
E. F. Beckenbach, Convex functions,, Bull. Amer. Math. Soc., 54 (1948), 439--460
-
[4]
W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. (Beograd) (N.S.), 23 (1978), 13--20
-
[5]
P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004), 299--308
-
[6]
S. S. Dragomir, On the Ostrowski’s Integral Inequality for Mappings with Bounded Variation and Applications, Math. Inequal. Appl., 4 (2001), 59--66
-
[7]
S. S. Dragomir, Refinements of the Generalised Trapozoid and Ostrowski Inequalities for Functions of Bounded Variation, Arch. Math., 91 (2008), 450--460
-
[8]
S. S. Dragomir, A Companion of Ostrowski’s Inequality for Functions of Bounded Variation and Applications, Int. J. Nonlinear Anal. Appl., 5 (2014), 89--97
-
[9]
S. S. Dragomir, A Functional Generalization of Ostrowski Inequality via Montgomery identity, Acta Math. Univ. Comenian. (N.S.), 84 (2015), 63--78
-
[10]
S. S. Dragomir, Inequalities of Jensen Type for $\phi$-Convex Functions, Fasciculi Mathematici, 5 (2015), 35--52
-
[11]
S. S. Dragomir, Integral inequalities of Jensen type for $\lambda$-convex functions, Mat. Vesnik, 68 (2016), 45--57
-
[12]
S. S. Dragomir, N. S. Barnett, An Ostrowski Type Inequality for Mappings whose Second Derivatives are Bounded and Applications, J. Indian Math. Soc. (N.S.), 66 (1999), 237--245
-
[13]
S. S. Dragomir, P. Cerone, N. S. Barnett, J. Roumeliotis, An Inequality of the Ostrowski Type for Double Integrals and Applications for Cubature Formulae, Tamsui Oxf. J. Math. Sci., 16 (2000), 1--16
-
[14]
S. S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowskis intergral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 19--25
-
[15]
S. S. Dragomir, J. Pečarić, L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335--341
-
[16]
A. Ekinci, Klasik Eşitsizlikler Yoluyla Konveks Fonksiyonlar için İntegral Eşitsizlikler, Ph.D. Thesis, Ataturk University (2014)
-
[17]
S. Gal, Approximation theory in fuzzy setting, In: Handbook of analytic-computational methods in applied mathematics, 2000 (2000), 617--666
-
[18]
E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys. (Russian),, 166 (1985), 138--142
-
[19]
N. Irshad, A. R. Khan, Generalization of Ostrowski Inequality for Differentiable functions and its applications to numerical quadrature rules, J. Math. Anal., 8 (2017), 79--102
-
[20]
N. Irshad, A. R. Khan, On Weighted Ostrowski Gruss Inequality with Applications, Transylv. J. Math. Mech., 10 (2018), 15--22
-
[21]
N. Irshad, A. R. Khan, A. Nazir, Extension of Ostrowki Type Inequality Via Moment Generating Function, Adv. Inequal. Appl., 2 (2020), 1--15
-
[22]
N. Irshad, A. R. Khan, M. A. Shaikh, Generalization of Weighted Ostrowski Inequality with Applications in Numerical Integration, Adv. Ineq. Appl., 7 (2019), 1--14
-
[23]
N. Irshad, A. R. Khan, M. A. Shaikh, Generalized Weighted Ostrowski-Gruss Type Inequality with Applications, Global J. Pure Appl. Math., 15 (2019), 675--692
-
[24]
O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301--317
-
[25]
D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers Group, Dordrecht (1991)
-
[26]
M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), 129--136
-
[27]
A. Ostrowski, Uber die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226--227
-
[28]
E. Set, S. Karatas, I. Mumcu, Fuzzy Ostrowski type inequalities for $(\alpha, m)$-convex functions, Journal of New theory, 6 (2015), 54--65
-
[29]
S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303--311
-
[30]
C. X. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523--532
-
[31]
C.-X. Wu, M. Ming, Embedding problem of fuzzy number space: Part I, Fuzzy Sets and Systems, 44 (1991), 33--38
-
[32]
Z. G. Xiao, A. H. Zhang, Mixed power mean inequalities, Res. Commun. Inequal., 8 (2002), 15--17
-
[33]
X. J. Yang, A note on Hölder inequality, Appl. Math. Comput., 134 (2003), 319--322