New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms
Authors
J. Alzabut
- Department of Mathematics and General Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia.
- Department of Industrial Engineering, OSTIM Technical University, 06374 Ankara, Turkiye.
S. R. Grace
- Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt.
G. N. Chhatria
- Department of Mathematics, Sambalpur University, Sambalpur 768019, India.
Abstract
The paper deals with the oscillation of higher order nonlinear differential equations with a nonlinear neutral term. The main results are proved via utilizing an integral criterion as well as a comparison theorem with first-order delay differential equation whose oscillatory properties are known. The proposed theorems improve, extend, and simplify existing ones in the literature. The results are associated with four numerical examples.
Share and Cite
ISRP Style
J. Alzabut, S. R. Grace, G. N. Chhatria, New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms, Journal of Mathematics and Computer Science, 28 (2023), no. 3, 294--305
AMA Style
Alzabut J., Grace S. R., Chhatria G. N., New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms. J Math Comput SCI-JM. (2023); 28(3):294--305
Chicago/Turabian Style
Alzabut, J., Grace, S. R., Chhatria, G. N.. "New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms." Journal of Mathematics and Computer Science, 28, no. 3 (2023): 294--305
Keywords
- Oscillation
- asymptotic behavior
- neutral differential equation
- comparison method
MSC
References
-
[1]
H. A. Abd El-Hamid, H. M. Rezk, A. M. Ahmed, G. AlNemer, M. Zakarya, H. A. El Saify, Some dynamic Hilbert-type inequalities for two variables on time scales, J. Inequal. Appl., 2021 (2021), 21 pages
-
[2]
R. P. Agarwal, M. Bohner, T. X. Li, C. H. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1--6
-
[3]
R. P. Agarwal, S. R. Grace, The oscillation of higher-order differential equations with deviating arguments, Comput. Math. Appl., 38 (1999), 185--199
-
[4]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Anal. Appl., 262 (2001), 601--622
-
[5]
R. P. Agarwal, S. R. Grace, D. O’Regan, The oscillation of certain higher-order functional differential equations, Math. Comput. Modelling, 37 (2003), 705--728
-
[6]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation of certain fourth order functional differential equations, Ukrainian Math. J., 59 (2007), 315--342
-
[7]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation Theory for Difference and Functional Difference Equations, Springer Science & Business Media, Berlin/Heidelberg (2013)
-
[8]
P. Agarwal, A.-A. Hyder, M. Zakarya, Well-posedness of Stochastic modified Kawahara equation, Adv. Difference Equ., 2020 (2020), 10 pages
-
[9]
G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, M. R. Kenawy, H. M. Rezk, Dynamic Hardy-type inequalities with non-conjugate parameters, Alex. Eng. J., 59 (2020), 4523--4532
-
[10]
B. Baculíková, J. Džurina, T. X. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Differ. Equ., 2011 (2011), 9 pages
-
[11]
M. Bartušek, M. Cecchi, Z. Došlá, M. Marini, Asymptotics for higher order differential equations with a middle term, J. Math. Anal. Appl., 388 (2012), 1130--1140
-
[12]
O. Bazighifan, R. A. El-Nabulsi, Different techniques for studying oscillatory behavior of solution of differential equations, Rocky Mountain J. Math., 51 (2021), 77--86
-
[13]
O. Bazighifan, O. Moaaz, R. A. El-Nabulsi, A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry, 12 (2020), 10 pages
-
[14]
C. Cesarano, O. Moaaz, B. Qaraad, N. A. Alshehri, S. K. Elagan, M. Zakarya, New results for oscillation of solutions of odd-order neutral differential equations, Symmetry, 13 (2021), 12 pages
-
[15]
R. A. El-Nabulsi, A generalized nonlinear oscillator from non-standard degenerate lagrangians and its consequent hamiltonian formalism, Proc. Nat. Acad. Sci. India Sect. A, 84 (2014), 563--569
-
[16]
R. A. El-Nabulsi, Non-standard power-law Lagrangians in classical and quantum dynamics, Appl. Math. Lett., 43 (2015), 120--127
-
[17]
R. A. El-Nabulsi, Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics, Qual. Theory Dyn. Syst., 16 (2017), 223--234
-
[18]
R. A. El-Nabulsi, Dynamics of pulsatile flows through microtubes from nonlocality, Mech. Res. Commun., 86 (2017), 18--26
-
[19]
R. A. El-Nabulsi, Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube, Int. J. Non-Linear Mechanics, 93 (2017), 65--81
-
[20]
R. A. El-Nabulsi, O. Moaaz, O. Bazighifan, New results for oscillatory behavior of fourth-order differential equations, Symmetry, 12 (2020), 12 pages
-
[21]
H. A. Ghany, Abd-Allah Hyder, M. Zakarya, Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives, Chin. Phys. B, 29 (2020), 1--8
-
[22]
H. A. Ghany, M. Zakarya, Exact solitary wave solutions for wick-type stochastic (2 + 1)-dimensional coupled KdV equations, J. Comput. Anal. Appl., 29 (2020), 617--633
-
[23]
S. R. Grace, J. Džurina, I. Jadlovská, T. X. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 13 pages
-
[24]
S. R. Grace, J. R. Graef, Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term, Math. Model. Anal., 23 (2018), 217--226
-
[25]
S. R. Grace, J. R. Graef, M. A. El-Beltagy, On the oscillation of third order delay dynamic equations on time scales, Comput. Math. Appl., 63 (2012), 775--782
-
[26]
S. R. Grace, J. R. Graef, I. Jadlovska, Oscillation criteria for second-order half-linear delay differential equations with mixed neutral terms, Math. Slovaca, 69 (2019), 1117--1126
-
[27]
S. R. Grace, J. R. Graef, E. Tunc, Oscillatory behaviour of second order damped neutral differential equations with distributed deviating arguments, Miskolc Math. Notes, 18 (2017), 759--769
-
[28]
J. Graef, S. Grace, E. Tunc, Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed deviating arguments, Funct. Differ. Equ., 25 (2018), 143--153
-
[29]
J. R. Graef, S. R. Grace, E. Tunc, Oscillatory behaviour of even-order nonlinear differential equations with a sublinear neutral term, Opuscula Math., 39 (2019), 39--47
-
[30]
S. R. Grace, I. Jadlovska, Oscillatory behavior of odd order nonlinear differential equations with a nonpositive neutral term, Dyn. Syst. Appl., 27 (2018), 125--136
-
[31]
J. R. Graef, M. K. Grammatikopoulos, P. W. Spikes, On the asymptotic behavior of solutions of a second order nonlinear neutral delay differential equation, J. Math. Anal. Appl., 156 (1991), 23--39
-
[32]
J. R. Graef, C. Qian, B. Yang, A three point boundary value problem for nonlinear fourth order differential equations, J. Math. Anal. Appl., 287 (2003), 217--233
-
[33]
J. R. Graef, P. W. Spikes, On the oscillation of an nth-order nonlinear neutral delay differential equation, J. Comput. Appl. Math., 41 (1992), 35--40
-
[34]
G. Gupta, M. Massoudi, Flow of a generalized second grade fluid between heated plates, Acta Mechanica, 99 (1993), 21--33
-
[35]
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1934)
-
[36]
T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, S. Asghar, Peristaltic transport of a third-order fluid in a circular cylindrical tube, Math. Models Methods Appl. Sci., 12 (2002), 1691--1706
-
[37]
D. B. Ingham, B. Yan, Fluid flow induced by a small amplitude harmonically oscillating cascade, Acta Mechanica, 91 (1992), 27--46
-
[38]
K. Kamo, H. Usami, Nonlinear oscillations of fourth Order quasilinear ordinary Differential equations, Acta Math. Hungar., 132 (2011), 207--222
-
[39]
I. T. Kiguradze, On the oscillatory character of solutions of the equation $dmu/dtm + a(t)|u| n \;sign\; u = 0$, Mat. Sb. (N.S.), 65 (1964), 172--187
-
[40]
M. M. Kipnis, D. A. Komissarova, A note on explicit stability conditions for autonomous higher order difference equations, J. Difference Equ. Appl., 13 (2007), 457--461
-
[41]
Y. Kitamura, T. Kusano, Oscillation of first order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64--68
-
[42]
R. G. Koplatadze, T. A. Chanturiya, Oscillating and monotone solutions of first-order differential equations with deviating argument, (Russian), Differentsial’nye Uravneniya, 18 (1982), 1463--1465
-
[43]
W. N. Li, Oscillation of higher order delay differential equations of neutral type, Georgian Math. J., 7 (2000), 347--353
-
[44]
T.-X. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35--41
-
[45]
T. X. Li, Y. V. Rogovchenko, Oscillation criteria for second–order superlinear Emden–Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489--500
-
[46]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Behavior of non-oscillatory solutions of fourth-order neutral differential equations, Symmetry, 12 (2020), 12 pages
-
[47]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 8 pages
-
[48]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, A. Muhib, New comparison theorems for the even-order neutral delay differential equation, Symmetry, 12 (2020), 11 pages
-
[49]
O. Moaaz, R. A. El-Nabulsi, A. Muhib, S. K. Elagan, M. Zakarya, New improved results for oscillation of fourth-order neutral differential equations, Mathematics, 9 (2021), 12 pages
-
[50]
M. Naito, F. Wu, A note on the existence and asymptotic behavior of nonoscillatory solutions of fourth order quasilinear differential equations, Acta Math. Hungar., 102 (2004), 177--202
-
[51]
N. Parhi, A. K. Tripathy, On oscillatory fourth order nonlinear neutral differential equations-I, Math. Slovaca, 54 (2004), 389--410
-
[52]
C. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty$ for differential equations with positive delays, Arch. Math. (Basel), 36 (1981), 168--178
-
[53]
H. M. Rezk, G. AlNemer, H. A. Abd El-Hamid, A. H Abdel-Aty, K. S. Nisar, M. Zakarya, Hilbert-type inequalities for time scale nabla calculus, Adv. Difference Equ., 2020 (2020), 21 pages
-
[54]
Y. Sun, Z. Han, S. Sun, C. Zhang, Oscillation criteria for even order nonlinear neutral differential equations, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 12 pages
-
[55]
P. G. Wang, W. Y. Shi, Oscillatory theorems of a class of even-order neutral equations, Appl. Math. Lett., 16 (2003), 1011--1018
-
[56]
Y. Wang, W. Wu, Unsteady flow of a fourth-grade fluid due to an oscillating plate, Int. J. Non-Linear Mechanics, 42 (2007), 432--441
-
[57]
W. M. Xiong, G. G. Yue, Almost periodic solutions for a class of fourth-order nonlinear differential equations with a deviating argument, Comput. Math. Appl., 60 (2010), 1184--1190
-
[58]
J. L. Yao, F. W. Meng, Asymptotic behavior of solutions of certain higher order nonlinear difference equation, J. Comput. Appl. Math., 205 (2007), 640--650
-
[59]
A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett., 11 (1998), 21--25
-
[60]
M. Zakarya, Hypercomplex Systems and Non-Gaussian Stochastic solutions of $\chi$- wick type $(3+1)$-dimensional modified Benjamin-Bona-Mahony Equation, Thermal Science, 24 (2020), 209--223
-
[61]
Q. Zhang, J. Yan, L. Gao, Oscillation behaviour of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl., 59 (2010), 426--430