Impulsive effects on stabilization of stochastic nonlinear reaction-diffusion systems with time delays and boundary feedback control
Authors
V. Gokulakrishnan
- Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai-600 089, Tamilnadu, India.
R. Srinivasan
- Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai-600 089, Tamilnadu, India.
Abstract
In this paper, we investigate the stabilization of stochastic nonlinear impulsive reaction-diffusion systems (SNIRDSs) with time delays
and boundary feedback control via average impulsive interval approach. Boundary feedback control strategy are designed to stabilization
of SNIRDSs. By constructing a Lyapunov-Krasovskii functional (LKF), and using Wirtinger's inequality, Gronwall inequality, average impulsive
interval approach, sufficient conditions are derived to guarantee the finite-time stability (FTS) of proposed systems. We investigate the
stabilization results by designing the control gain matrices for boundary feedback controller. The criterions are expressed in terms of
linear matrix inequalities (LMIs) that can be verified by Matlab LMI toolbox. Finally, numerical example are given to verify the efficiency
and superiority of proposed stabilization criterions.
Share and Cite
ISRP Style
V. Gokulakrishnan, R. Srinivasan, Impulsive effects on stabilization of stochastic nonlinear reaction-diffusion systems with time delays and boundary feedback control, Journal of Mathematics and Computer Science, 28 (2023), no. 4, 350--362
AMA Style
Gokulakrishnan V., Srinivasan R., Impulsive effects on stabilization of stochastic nonlinear reaction-diffusion systems with time delays and boundary feedback control. J Math Comput SCI-JM. (2023); 28(4):350--362
Chicago/Turabian Style
Gokulakrishnan, V., Srinivasan, R.. "Impulsive effects on stabilization of stochastic nonlinear reaction-diffusion systems with time delays and boundary feedback control." Journal of Mathematics and Computer Science, 28, no. 4 (2023): 350--362
Keywords
- Stochastic nonlinear systems
- reaction-diffusion terms
- impulsive effects
- boundary feedback control
- average impulsive interval approach
MSC
References
-
[1]
C. Aouiti, H. Jallouli, State feedback controllers based finite-time and fixed-time stabilisation of high order BAM neural networks with reaction-diffusion term, Int. J. Syst. Sci., 52 (2021), 905--927
-
[2]
E. Arslan, R. Vadivel, M. Syed Ali, S. Arik, Event-triggered $H_{\infty}$ filtering for delayed neural networks via sampled-data, Neural Netw., 91 (2017), 11--21
-
[3]
P. Balasubramaniam, C. Vidhya, Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms, J. Comput. Appl. Math., 234 (2010), 3458--3466
-
[4]
T. Chen, S. Peng, Y. Hong, G. Mai, Finite-time stability and stabilization of impulsive stochastic delayed neural networks with Rous and Rons, IEEE Access, 8 (2020), 87133--87141
-
[5]
P. Cheng, F. Q. Deng, F. Q. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal. Hybrid Syst., 30 (2018), 106--117
-
[6]
K. Ding, Q. X. Zhu, L. J. Liu, Extended dissipativity stabilization and synchronization of uncertain stochastic reactiondiffusion neural networks via intermittent non-fragile control, J. Franklin Inst., 356 (2019), 11690--11715
-
[7]
T. Dong, A. J. Wang, H. Y. Zhu, X. F. Liao, Event-triggered synchronization for reaction-diffusion complex networks via random sampling, Phys. A, 495 (2018), 454--462
-
[8]
A. M. Elaiw, A. G. Hobiny, A. D. Al Agha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 21 pages
-
[9]
N. Espitia, I. Karafyllis, M. Krstic, Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: A small-gain approach, Automatica J. IFAC, 128 (2021), 10 pages
-
[10]
X. Fan, X. Zhang, L. Wu, M. Shi, Finite-time stability analysis of reaction-diffusion genetic regulatory networks with time-varying delays, IEEE/ACM Trans. Comput. Biol. Bioinform., 14 (2017), 868--879
-
[11]
N. Gunasekaran, M. Syed Ali, S. Arik, H. I. Abdul Ghaffard, A. A. Zaki Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Network, 149 (2022), 137--145
-
[12]
N. Gunasekaran, N. M. Thoiyab, P. Muruganantham, G. Rajchakit, B. Unyong, Novel results on global robust stability analysis for dynamical delayed neural networks under parameter uncertainties, IEEE Access, 8 (2020), 178108--178116
-
[13]
N. Gunasekaran, N. M. Thoiyab, Q. Zhu, J. Cao, P. Muruganantham, New global asymptotic robust rtability of dynamical delayed neural networks via intervalized interconnection matrices, IEEE Trans. Cybern., 2021 (2021), 11 pages
-
[14]
N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499--511
-
[15]
X.-X. Han, K.-N. Wu, X. H. Ding, Finite-time stabilization for stochastic reaction-diffusion systems with Markovian switching via boundary control, Appl. Math. Comput., 385 (2020), 12 pages
-
[16]
X.-X. Han, K.-N. Wu, X. H. Ding, B. Q. Yang, Boundary control of stochastic reaction-diffusion systems with Markovian switching, Internat. J. Robust Nonlinear Control, 30 (2020), 4129--4148
-
[17]
R. Kumar, S. Das, Exponential stability of inertial BAM neural network with time-varying impulses and mixed timevarying delays via matrix measure approach, Commun. Nonlinear Sci. Numer. Simul., 81 (2019), 13 pages
-
[18]
S. Lakshmanan, M. Prakash, R. Rakkiyappan, J. H. Young, Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50 (2020), 911--922
-
[19]
X. D. Li, R. Rakkiyappan, P. Balasubramaniam, Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations, J. Franklin Inst., 348 (2011), 135--155
-
[20]
Z. Li, R. Xu, Global asymptotic stability of stochastic reaction-diffusion neural networks with time delays in the leakage terms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1681--1689
-
[21]
H.-L. Lin, F.-B. Wang, Global dynamics of a nonlocal reaction-diffusion system modeling the west nile virus transmission, Nonlinear Anal. Real World Appl., 46 (2019), 352--373
-
[22]
X. Z. Liu, K. N. Wu, Z. T. Li, Exponential stabilization of reaction-diffusion systems via intermittent boundary control, IEEE Trans. Automat. Control, 2021 (2021), 3036--3042
-
[23]
X. Z. Liu, K. N. Wu, W. Zhang, Mean square finite-time boundary stabilisation and H∞ boundary control for stochastic reaction-diffusion systems, Int. J. Syst. Sci., 50 (2019), 1388--1398
-
[24]
X. Z. Liu, K. N. Wu, W. Zhang, Intermittent boundary stabilization of stochastic reaction-diffusion Cohen-Grossberg neural networks, Neural Network, 131 (2020), 1--13
-
[25]
G. Narayanan, M. Syed Ali, M. Irshad Alam, G. Rajchakit, N. Boonsatit, P. Kumar, P. Hammachukiattikul, Adaptive fuzzy feedback controller design for finite-time Mittag-Leffler synchronization of fractional-order quaternion-valued reactiondiffusion fuzzy molecular modeling of delayed neural networks, IEEE Access, 9 (2021), 130862--130883
-
[26]
B. Priya, M. Syed Ali, G. K. Thakur, S. Sanober, B. Dhupia, pth moment exponential stability of memristor CohenGrossberg BAM neural networks with time-varying delays and reaction-diffusion, Chin. J. Phys., 74 (2021), 184--194
-
[27]
X. Song, J. Man, S. Song, Y. Zhang, Z. Ning, Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application, Neurocomput., 414 (2020), 131--142
-
[28]
X. Song, M. Wang, J. H. Park, S. Song, Spatial-L∞-norm-based finite-time bounded control for semilinear parabolic PDE systems with applications to chemical-reaction processes, IEEE Trans. Cybern., 52 (2022), 178--191
-
[29]
M. Syed Ali, N. Gunasekaran, Sampled-data state estimation of Markovian jump static neural networks with interval time-varying delays, J. Comput. Appl. Math., 343 (2018), 217--229
-
[30]
M. Syed Ali, N. Gunasekaran, Y. H. Joo, Sampled-data state estimation of neutral type neural networks with mixed time-varying delays, Neural Process. Lett., 50 (2019), 357--378
-
[31]
M. Syed Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays,, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 22 pages
-
[32]
M. Syed Ali, L. Palanisamy, J. Yogambigai, L. Wang, Passivity-based synchronization of Markovian jump complex dynamical networks with time-varying delays, parameter uncertainties, reaction-diffusion terms, and sampled-data control, J. Comput. Appl. Math., 352 (2019), 79--92
-
[33]
M. Syed Ali, S. Saravanan, L. Palanisamy, Stochastic finite-time stability of reaction-diffusion Cohen-Grossberg neural networks with time-varying delays, Chin. J. Phys., 57 (2019), 314--328
-
[34]
M. Syed Ali, R. Vadivel, O. M. Kwon, Decentralised event-triggered impulsive synchronisation for semi-Markovian jump delayed neural networks with leakage delay and randomly occurring uncertainties, Internat. J. Systems Sci., 50 (2019), 1636--1660
-
[35]
M. Syed Ali, R. Vadivel, R. Saravanakumar, Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays, Int. J. Control, 92 (2019), 270--290
-
[36]
M. Syed Ali, J. Yogambigai, Finite-time robust stochastic synchronization of uncertain Markovian complex dynamical networks with mixed time-varying delays and reaction-diffusion terms via impulsive control, J. Franklin Inst., 354 (2017), 2415--2436
-
[37]
M. Syed Ali, J. Yogambigai, O. M. Kwon, Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control, Int. J. Syst. Sci., 49 (2018), 718--735
-
[38]
J. Tan, C. Li, T. Huang, The stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms, Cogn. Neurodyn., 9 (2015), 213--220
-
[39]
G. K. Thakur, M. Syed Ali, B. Priya, V. Gokulakrishnan, S. A. Kauser, Impulsive effects on stochastic bidirectional associative memory neural networks with reaction-diffusion and leakage delays, Int. J. Comput. Math., 99 (2022), 1669--1686
-
[40]
R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme, Chaos Solitons Fractals, 150 (2021), 15 pages
-
[41]
R. Vadivel, P. Hammachukiattikul, G. Rajchakit, M. Syed Ali, B. Unyong, Finite-time event-triggered approach for recurrent neural networks with leakage term and its application, Math. Comput. Simul., 182 (2021), 765--790
-
[42]
R. Vadivel, Y. H. Joo, Reliable fuzzy $H_{\infty}$ control for permanent magnet synchronous motor against stochastic actuator faults, IEEE Trans. Syst. Man Cybern. Syst., 51 (2019), 2232--2245
-
[43]
R. Vadivel, Y. H. Joo, Robust event-triggered T-S fuzzy system with successive time-delay signals and its application, IET Control Theory Appl., 14 (2021), 3697--3712
-
[44]
R. Vadivel, S. Srinivasan, Y. Wu, N. Gunasekaran, Study on bifurcation analysis and Takagi-Sugeno fuzzy sampled-data stabilization of permanent magnet synchronous motor systems, Math. Meth. Appl. Sci., 2021 (2021), 10 pages
-
[45]
R. Vadivel, R. Suresh, P. Hammachukiattikul, B. Unyong, N. Gunasekaran, Event-triggered ${L}_{2}-{L}_{8}$ filtering for network-based neutral systems with time-varying delays via T-S fuzzy approach, IEEE Access, 9 (2021), 145133--145147
-
[46]
J.-L. Wang, H.-N. Wu, Passivity of delayed reaction-diffusion networks with application to a food web model, Appl. Math. Comput., 219 (2013), 11311--11326
-
[47]
J.-L. Wang, X.-X. Zhang, H.-N. Wu, T. W. Huang, Q. Wang, Finite-time passivity and synchronization of coupled reaction diffusion neural networks with multiple weights, IEEE Trans. Cybern., 49 (2018), 3385--3397
-
[48]
T. Wei, L. Wang, Y. Wang, Existence, uniqueness and stability of mild solutions to stochastic reaction-diffusion CohenGrossberg neural networks with delays and Wiener processes, Neurocomput., 239 (2017), 19--27
-
[49]
K.-N. Wu, M.-Y. Na, L. M. Wang, X. H. Ding, B. Y. Wu, Finite-time stability of impulsive reaction-diffusion systems with and without time delay, Appl. Math. Comput., 363 (2019), 17 pages
-
[50]
K. N. Wu, M. Z. Ren, X. Z. Liu, Exponential input-to-state stability of stochastic delay reaction-diffusion neural networks, Neurocomput., 412 (2020), 399--405
-
[51]
K.-N. Wu, H.-X. Sun, P. Shi, C.-C. Lim, Finite-time boundary stabilization of reaction-diffusion systems, Int. J. Robust Nonlinear Control, 28 (2018), 1641--1652
-
[52]
K.-N. Wu, H.-X. Sun, B. Q. Yang, C.-C. Lim, Finite-time boundary control for delay reaction-diffusion systems, Appl. Math. Comput., 329 (2018), 52--63
-
[53]
Y. Wu, Y. Wang, N. Gunasekaran, R. Vadivel, Almost sure consensus of multi-agent systems: An intermittent noise, IEEE Trans. Circuits Syst. II: Express Br., 2022 (2022), 2897--2901
-
[54]
Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggerd feedback control, IEEE Trans. Automat. Control, 64 (2019), 3764--3771
-
[55]
Q. Zhu, R. Rakkiyappan, A. Chandrasekar, Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control, Neurocomput., 136 (2014), 136--151