Positive periodic solution of a discrete commensal symbiosis model with Beddington-DeAngelis functional response
Authors
S. Lin
- College of Mathematics and Statistics, Fuzhou University, Fuzhou, Fujian 350002, P. R. China.
Q. Zhou
- College of Mathematics and Statistics, Fuzhou University, Fuzhou, Fujian 350002, P. R. China.
R. Wu
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350014, P. R. China.
Abstract
A non-autonomous discrete commensal symbiosis model with Beddington-DeAngelis functional response is proposed and studied in this paper. Sufficient conditions are obtained for the
existence of positive periodic solution of the system.
Share and Cite
ISRP Style
S. Lin, Q. Zhou, R. Wu, Positive periodic solution of a discrete commensal symbiosis model with Beddington-DeAngelis functional response, Journal of Mathematics and Computer Science, 28 (2023), no. 4, 363--372
AMA Style
Lin S., Zhou Q., Wu R., Positive periodic solution of a discrete commensal symbiosis model with Beddington-DeAngelis functional response. J Math Comput SCI-JM. (2023); 28(4):363--372
Chicago/Turabian Style
Lin, S., Zhou, Q., Wu, R.. "Positive periodic solution of a discrete commensal symbiosis model with Beddington-DeAngelis functional response." Journal of Mathematics and Computer Science, 28, no. 4 (2023): 363--372
Keywords
- Commensal symbiosis model
- positive periodic solution
- Beddington-DeAngelis functional response
MSC
References
-
[1]
B. G. Chen, Dynamic behaviors of a commensal symbiosis model involving Allee effect and one party can not survive independently, Adv. Difference Equ., 2018 (2018), 12 pages
-
[2]
B. G. Chen, The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting, Adv. Difference Equ., 2019 (2019), 14 pages
-
[3]
F. D. Chen, X. X. Chen, S. Y. Huang, Extinction of a two species non-autonomous competitive system with BeddingtonDeAngelis functional response and the effect of toxic substances, Open Math., 14 (2016), 1157--1173
-
[4]
L. J. Chen, T. T. Liu, F. D. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS Math., 7 (2022), 536--551
-
[5]
F. Chen, L. Pu, L. Yang, Positive periodic solution of a discrete obligate Lotka-Volterra model, Commun. Math. Biol. Neurosci., 2015 (2015), 11 pages
-
[6]
F. D. Chen, X. D. Xie, X. F. Chen, Dynamic behaviors of a stage-structured cooperation model, Commun. Math. Biol. Neurosci., 2015 (2015), 19 pages
-
[7]
F. D. Chen, Y. L. Xue, Q. F. Lin, X. D. Xie, Dynamic behaviors of a Lotka–Volterra commensal symbiosis model with density dependent birth rate, Adv. Difference Equ., 2018 (2018), 14 pages
-
[8]
H. Deng, X. Huang, The influence of partial closure for the populations to a harvesting Lotka-Volterra commensalism model, Commun. Math. Biol. Neurosci., 2018 (2018), 17 pages
-
[9]
M. Fan, K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Modelling, 35 (2002), 951--961
-
[10]
R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin-New York (1977)
-
[11]
X. Y. Guan, F. D. Chen, Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 48 (2019), 71--93
-
[12]
R. Y. Han, F. D. Chen, Global stability of a commensal symbiosis model with feedback controls, Commun. Math. Biol. Neurosci., 2015 (2015), 10 pages
-
[13]
R. Y. Han, F. D. Chen, X. D. Xie, Z. S. Miao, Global stability of May cooperative system with feedback controls, Adv. Difference Equ., 2015 (2015), 10 pages
-
[14]
R. Y. Han, X. D. Xie, F. D. Chen, Permanence and global attractivity of a discrete pollination mutualism in plant–pollinator system with feedback controls, Adv. Difference Equ., 2016 (2016), 17 pages
-
[15]
S. Jawad, Study the dynamics of commensalism interaction with Michaels-Menten type prey harvesting, Al-Nahrain J. Sci., 25 (2022), 45--50
-
[16]
W. M. Ji, M. Liu, Optimal harvesting of a stochastic commensalism model with time delay, Phys. A, 527 (2019), 10 pages
-
[17]
G. B. Kumar, M. N. Srinivas, Influence of spatiotemporal and noise on dynamics of a two species commensalism model with optimal harvesting, Res. J. Pharmacy Tech., 9 (2016), 1717--1726
-
[18]
C. Q. Lei, Dynamic behaviors of a stage-structured commensalism system, Adv. Difference Equ., 2018 (2018), 20 pages
-
[19]
C. Q. Lei, Dynamic behaviors of a Holling type commensal symbiosis model with the first species subject to Allee effect, Commun. Math. Biol. Neurosci., 2019 (2019), 12 pages
-
[20]
T. Li, Q. Lin, J. Chen, Positive periodic solution of a discrete commensal symbiosis model with Holling II functional response, Commun. Math. Biol. Neurosci., 2016 (2016), 15 pages
-
[21]
T. Y. Li, Q. Wang, Stability and Hopf bifurcation analysis for a two-species commensalism system with delay, Qual. Theory Dyn. Syst., 20 (2021), 20 pages
-
[22]
Q. F. Lin, Allee effect increasing the final density of the species subject to the Allee effect in a Lotka Volterra commensal symbiosis model, Adv. Difference Equ., 2018 (2018), 9 pages
-
[23]
Y. Liu, X. D. Xie, Q. F. Lin, Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka Volterra commensalism model incorporating partial closure for the populations, Adv. Difference Equ., 2018 (2018), 16 pages
-
[24]
Z. S. Miao, X. D. Xie, L. Q. Pu, Dynamic behaviors of a periodic Lotka–Volterra commensal symbiosis model with impulsive, Comm. Math. Biol. Neur., 2015 (2015), 15 pages
-
[25]
B. H. Prasad, N. C. P. Ramacharyulu, Discrete model of commensalism between two species, Int. J. Modern Edu. Comput. Sci., 8 (2012), 40--46
-
[26]
N. Puspitasari, W. M. Kusumawinahyu, T. Trisilowati, Dynamic analysis of the symbiotic model of commensalism and parasitism with harvesting in commensal populations, JTAM (Jurnal Teori dan Aplikasi Matematika), 5 (2021), 193--204
-
[27]
N. Puspitasari, W. M. Kusumawinahyu, T. Trisilowati, Dynamical analysis of the symbiotic model of commensalism in four populations with Michaelis-Menten type harvesting in the first commensal population, JTAM (Jurnal Teori dan Aplikasi Matematika), (),
-
[28]
G. C. Sun, H. Sun, Analysis on symbiosis model of two populations, J. Weinan Norm. Univ., 28 (2013), 6--8
-
[29]
C. Vargas-De-Leon, G. Gomez-Alcaraz, Global stability in some ecological models of commensalism between two species, Biomatematica, 23 (2013), 139--146
-
[30]
] R. X. Wu, L. Li, Q. F. Lin, A Holling type commensal symbiosis model involving Allee effect, Comm. Math. Biol. Neur., 2018 (2018), 13 pages
-
[31]
X. D. Xie, F. D. Chen, Y. L. Xue, Note on the stability property of a cooperative system incorporating harvesting, Discrete Dyn. Nat. Soc., 2014 (2014), 5 pages
-
[32]
X. D. Xie, F. D. Chen, K. Yang, Y. L. Xue, Global attractivity of an integrodifferential model of mutualism, Abstr. Appl. Anal., 2014 (2014), 6 pages
-
[33]
X. D. Xie, Z. S. Miao, Y. L. Xue, Positive periodic solution of a discrete Lotka-Volterra commensal symbiosis model, Commun. Math. Biol. Neurosci., 2015 (2015), 10 pages
-
[34]
Y. L. Xue, F. D. Chen, X. D. Xie, R. Y. Han, Dynamic behaviors of a discrete commensalism system, Ann. Appl. Math., 31 (2015), 452--461
-
[35]
Y. L. Xue, X. D. Xie, F. D. Chen, R. Y. Han, Almost periodic solution of a discrete commensalism system, Discrete Dyn. Nat. Soc., 2015 (2015), 11 pages
-
[36]
Y. L. Xue, X. D. Xie, Q. F. Lin, Almost periodic solutions of a commensalism system with Michaelis-Menten type harvesting on time scales, Open Math., 17 (2019), 1503--1514
-
[37]
K. Yang, Z. S. Miao, F. D. Chen, X. D. Xie, Influence of single feedback control variable on an autonomous Holling II type cooperative system, J. Math. Anal. Appl., 435 (2016), 874--888
-
[38]
K. Yang, X. D. Xie, F. D. Chen, Global stability of a discrete mutualism model, Abstr. Appl. Anal., 2014 (2014), 7 pages
-
[39]
L. Y. Yang, X. D. Xie, F. D. Chen, Y. L. Xue, Permanence of the periodic predator prey mutualist system, Adv. Difference Equ., 2015 (2015), 15 pages
-
[40]
S. B. Yu, F. D. Chen, Dynamic behaviors of a competitive system with Beddington-DeAngelis functional response, Discrete Dyn. Nat. Soc., 2019 (2019), 12 pages
-
[41]
Z. F. Zhu, Q. L. Chen, Mathematic analysis on commensalism Lotka-Volterra model of populations, J. Jixi Univ., 8 (2008), 100--101
-
[42]
Z. L. Zhu, Y. M. Chen, Z. Li, F. D. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with Allee effect, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 32 (2022), 25 pages