New fixed point theorems for \(\theta\)-\(\phi\)-contraction on \(b\)-metric spaces
Volume 29, Issue 1, pp 12--27
http://dx.doi.org/10.22436/jmcs.029.01.02
Publication Date: August 11, 2022
Submission Date: February 07, 2022
Revision Date: February 15, 2022
Accteptance Date: March 10, 2022
Authors
M. Rossafi
- LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco.
A. Kari
- AMS Laboratory, Faculty of Sciences, Ben M'Sik, Hassan II University, Casablanca, Morocco.
C. Park
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
J. R. Lee
- Department of Data Science, Daejin University, Kyunggi 11159, Korea.
Abstract
In this paper, we define \(\theta\)-\(\phi\)-contraction on a \(b\)-metric space into itself by extending \(\theta\)-\(\phi \)-contraction introduced by Zheng {et al.} [D. W. Zheng, Z. Y. Cai, P. Wang, J. Nonlinear Sci. Appl., \(\bf 10\) (2017), 2662--2670] in metric space and also, we prove \(\theta \)-type theorem in the setting of \(b\)-metric spaces as well as \(\theta\)-\(\phi \)-type theorem in the framework of \(b\)-rectangular metric spaces. Moreover, we give some applications to nonlinear integral equations. We also give illustrative examples to exhibit the utility of our results.
Share and Cite
ISRP Style
M. Rossafi, A. Kari, C. Park, J. R. Lee, New fixed point theorems for \(\theta\)-\(\phi\)-contraction on \(b\)-metric spaces, Journal of Mathematics and Computer Science, 29 (2023), no. 1, 12--27
AMA Style
Rossafi M., Kari A., Park C., Lee J. R., New fixed point theorems for \(\theta\)-\(\phi\)-contraction on \(b\)-metric spaces. J Math Comput SCI-JM. (2023); 29(1):12--27
Chicago/Turabian Style
Rossafi, M., Kari, A., Park, C., Lee, J. R.. "New fixed point theorems for \(\theta\)-\(\phi\)-contraction on \(b\)-metric spaces." Journal of Mathematics and Computer Science, 29, no. 1 (2023): 12--27
Keywords
- Fixed point
- rectangular \(b\)-metric space
- \(\theta\)-\(\phi\)-contraction
MSC
References
-
[1]
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941--960
-
[2]
I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26--37
-
[3]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133--181
-
[4]
F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 27--35
-
[5]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5--11
-
[6]
İ. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153--171
-
[7]
H.-S. Ding, M. Imdad, S. Radenovic, J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22 (2016), 151--164
-
[8]
N. V. Dung, A sharp improvement of fixed point results for quasi-contractions in b-metric spaces, Miskolc Math. Notes, 21 (2020), 451--461
-
[9]
H. A. Hammad, M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11 (2019), 13 pages
-
[10]
H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic $\eta_s^q$-rational contractive mappings technique in $b$-metric-like spaces, Symmetry, 11 (2019), 12 pages
-
[11]
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8 pages
-
[12]
R. Kannan, Some results on fixed points–II, Amer. Math. Monthly, 76 (1969), 405--408
-
[13]
A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-point theorems for $\theta$-$\phi$-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci., 2020 (2020), 19 pages
-
[14]
A. Kari, M. Rossafi, E. Marhrani, M. Aamri, $\theta$-$\phi$-Contraction on $\left(\alpha,\eta \right)$-complete rectangular $b-$metric spaces, Int. J. Math. Math. Sci., 2020 (2020), 17 pages
-
[15]
A. Kari, M. Rossafi, E. Marhrani, M. Aamri, New fixed point theorems for θ-φ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal., 2020 (2020), 12 pages
-
[16]
A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys., 2020 (2020), 10 pages
-
[17]
N. Mlaiki, N. Dedovic, H. Aydi, M. G. Filipoviac, B. Bin-Mohsin, S. Radenovic, Some new observations on Geraghty and Ciric type results in b-metric spaces, Math., 7 (2019), 11 pages
-
[18]
H. K. Nashine, S. Shil, Z. Kadelburg, Common positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spaces, Aequationes Math., 96 (2022), 17--41
-
[19]
S. Radenović, T. Došenović, V. Ozturk, C. Dolicanin, A note on the paper: ”Nonlinear integral equations with new admissibility types in b-metric spaces”, J. Fixed Point Theory Appl., 19 (2017), 2287--2295
-
[20]
S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121--124
-
[21]
J. R. Roshan, V. Parvaneh, Z. Kadelberg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2017), 229--245
-
[22]
D. W. Zheng, Z. Y. Cai, P. Wang, New fixed point theorems for $\theta$-$\varphi$-contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662--2670