New Ostrowski type inequalities pertaining to conformable fractional operators
Authors
M. Tariq
- Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
S. K. Sahoo
- Siksha O Anusandhan University, Bhubaneswar, , Odisha, India .
H. Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy.
A. Iampan
- Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
A. A. Shaikh
- Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
Abstract
The advancements of integral inequalities with the help of fractional operators have recently been the focus of attention in the theory of inequalities. In this study, we first review some fundamental concepts, and then using \(k\)-conformable fractional integrals, we establish a new integral identity for differentiable functions. Then, considering this identity as an auxiliary result, several Ostrowski-type inequalities are presented for functions whose modulus of the first derivatives are quasi-convex. The obtained results represent generalizations as well as refinements for some published results.
Share and Cite
ISRP Style
M. Tariq, S. K. Sahoo, H. Ahmad, A. Iampan, A. A. Shaikh, New Ostrowski type inequalities pertaining to conformable fractional operators, Journal of Mathematics and Computer Science, 29 (2023), no. 1, 28--39
AMA Style
Tariq M., Sahoo S. K., Ahmad H., Iampan A., Shaikh A. A., New Ostrowski type inequalities pertaining to conformable fractional operators. J Math Comput SCI-JM. (2023); 29(1):28--39
Chicago/Turabian Style
Tariq, M., Sahoo, S. K., Ahmad, H., Iampan, A., Shaikh, A. A.. "New Ostrowski type inequalities pertaining to conformable fractional operators." Journal of Mathematics and Computer Science, 29, no. 1 (2023): 28--39
Keywords
- Ostrowski inequality
- quasi-convexity
- \(k\)-fractional conformable integral
- E-beta functions
- E-gamma functions
MSC
- 26A51
- 26A33
- 26D07
- 26D10
- 26D15
References
-
[1]
M. A. Aba Oud, A. Ali, H. Alrabaiah, S. Ullah, M. A. Khan, S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load, Adv. Difference Equ., 2021 (2021), 19 pages
-
[2]
N. Akhtar, M. U. Awan, M. Z. Javed, M. T. Rassias, M. V. Mihai, M. A. Noor, K. I. Noor, Ostrowski type inequalities involving harmonically convex functions and applications, Symmetry, 13 (2021), 14 pages
-
[3]
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071--1076
-
[4]
M. S. Alqarni, M. Alghamdi, T. Muhammad, A. S. Alshomrani, M. A. Khan, Mathematical modeling for novel coronavirus (COVID-19) and control, Numer. Methods Partial Differential Equations, 38 (2020), 760--776
-
[5]
S. I. Araz, Analysis of a COVID-19 model optimal control, stability and simulations, Alex. Eng. J., 60 (2021), 647--658
-
[6]
A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136 (2020), 38 pages
-
[7]
B. Celik, E. Set, A. O. Akdemir, New inequalities of Ostrowski’s type for quasi-convex functions associated with new fractional conformable integrals, Math. Stud. Appl., 362 (2018), 4--6
-
[8]
R. Diaz, E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat., 15 (2007), 179--192
-
[9]
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1952)
-
[10]
F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 47 (2017), 16 pages
-
[11]
H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform., 28 (2018), 19--28
-
[12]
M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Difference Equ., 2020 (2020), 22 pages
-
[13]
M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414--1430
-
[14]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[15]
B. B. Mohsen, M. U. Awan, M. Z. Javed, M. A. Noor, K. I. Noor, Some new Ostrowski-type inequalities involving σ-fractional integrals, J. Math., 2021 (2021), 12 pages
-
[16]
S. Mubeen, S. Iqbal, G. Rahman, Contiguous function relations and an integral representation for Appell k-series F(1, k), Int. J. Math. Res., 4 (2015), 53--63
-
[17]
C. P. Niculescu, L.-E. Persson, Convex functions and their applications, Springer-Verlag, New York (2006)
-
[18]
A. Ostrowski, Uber die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226--227
-
[19]
S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for the s–convex functions and theirs applications, J. Inequal. Appl., 201 (2019), 1--14
-
[20]
F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Math., 4 (2019), 343--358
-
[21]
S. K. Sahoo, R. P. Agarwal, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, K. M. Abualnaja, Hadamard-Mercer, Dragomir-Agarwal-Mercer, and Pachpatte-Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, Symmetry, 14 (2022), 11 pages
-
[22]
S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo-Fabrizio Operator, Fractal Fract., 6 (2022), 13 pages
-
[23]
E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fracional integrals, Comput. Math. Appl., 63 (2012), 1147--1154
-
[24]
E. Set, B. Celik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 2016 (2016), 137--149
-
[25]
E. Set, M. E. Özdemir, M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 2012 (2012), 67--82
-
[26]
H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501--1520
-
[27]
M. Tariq, New Hermite–Hadamard type inequalities via p–harmonic exponential type convexity and applications, Uni. J. Math. Appl., 4 (2021), 59--69
-
[28]
M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convex function, J. Math. Anal. Model., 2 (2021), 1--15
-
[29]
M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using Hypergeometric Functions, J. Frac. Calc. Nonlinear Sys., 2 (2021), 24--41