Zalcman coefficient functional for tilted starlike functions with respect to conjugate points
Authors
D. Mohamed
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
N. H. A. A. Wahid
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
Abstract
In this paper, we consider a subclass of tilted starlike functions with respect to conjugate points in an open unit disk. For functions in this subclass, we obtain the upper bounds for the initial coefficients and the Zalcman coefficient functional. Furthermore, we present several (known or new) consequences of our results based on the special choices of the involved parameters.
Share and Cite
ISRP Style
D. Mohamed, N. H. A. A. Wahid, Zalcman coefficient functional for tilted starlike functions with respect to conjugate points, Journal of Mathematics and Computer Science, 29 (2023), no. 1, 40--51
AMA Style
Mohamed D., Wahid N. H. A. A., Zalcman coefficient functional for tilted starlike functions with respect to conjugate points. J Math Comput SCI-JM. (2023); 29(1):40--51
Chicago/Turabian Style
Mohamed, D., Wahid, N. H. A. A.. "Zalcman coefficient functional for tilted starlike functions with respect to conjugate points." Journal of Mathematics and Computer Science, 29, no. 1 (2023): 40--51
Keywords
- Univalent functions
- starlike functions with respect to conjugate points
- coefficient estimates
- Zalcman conjecture
- subordination
MSC
References
-
[1]
N. M. Alarifi, M. Obradovic, N. Tuneski, On certain properties of the class $U(\lambda)$, arXiv, 2020 (2020), 9 pages
-
[2]
S. Banga, S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class ${SL}^*$, Math. Slovaca, 70 (2020), 849--862
-
[3]
D. Bansal, J. Sokól, Zalcman conjecture for some subclass of analytic functions, J. Frac. Cal. Appl., 8 (2017), 1--5
-
[4]
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467--474
-
[5]
S. A. F. M. Dahhar, A. Janteng, A subclass of starlike functions with respect to conjugate points, Int. Math. Forum, 4 (2009), 1373--1377
-
[6]
L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137--152
-
[7]
P. L. Duren, Univalent functions, Springer-Verlag, New York (1983)
-
[8]
I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369--379
-
[9]
I. Efraimidis, D. Vukotic, On the generalized Zalcman functional for some classes of univalent functions, arXiv, 2014 (2014), 8 pages
-
[10]
R. M. El-Ashwah, D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2 (1987), 85--100
-
[11]
S. A. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci., 14 (1991), 451--456
-
[12]
T. Janani, G. Murugusundaramoorthy, Zalcman functional for class of $\lambda$-pseudo starlike functions associated with Sigmoid function, Bull. Transilv. Univ. Bras¸ov Ser. III, 11 (2018), 77--84
-
[13]
B. Khan, I. Aldawish, S. Araci, M. G. Khan, Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., 6 (2022), 16 pages
-
[14]
B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), 7 pages
-
[15]
V. S. Kumar, R. B. Sharma, A study on Zalcman conjecture and third Hankel determinant, J. Phys. Conf. Ser., 1597 (2020), 12 pages
-
[16]
V. S. Kumar, R. B. Sharma, Zalcman conjecture and Hankel determinant of order three for starlike and convex functions associated with shell-like curves, Probl. Anal. Issues Anal., 9 (2020), 119--137
-
[17]
S. L. Krushkal, Univalent functions and holomorphic motions, J. Anal. Math., 66 (1995), 253--275
-
[18]
S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv, 2014 (2014), 19 pages
-
[19]
S. L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., 17 (2020), 663--681
-
[20]
L. Li, S. Ponnusamy, On the generalized Zalcman functional $\lambda {a_n}^2 - {a_{2n - 1}}$ in the close-to-convex family, Proc. Amer. Math. Soc., 145 (2017), 833--846
-
[21]
L. Li, S. Ponnusamy, J. Qiao, Generalized Zalcman conjecture for convex functions of order $\alpha$, Acta Math. Hungar., 150 (2016), 234--246
-
[22]
W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (1988), 741--744
-
[23]
W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234 (1999), 328--339
-
[24]
W. K. Mashwani, B. Ahmad, N. Khan, M. G. Khan, S. Arjika, B. Khan, R. Chinram, Fourth Hankel determinant for a subclass of starlike functions based on modified sigmoid, J. Funct. Spaces, 2021 (2021), 10 pages
-
[25]
Y. A. Muhanna, L. Li, S. Ponnusamy, Extremal problems on the class of convex functions of order $-1/2$, Arch. Math. (Basel), 103 (2014), 461--471
-
[26]
M. Obradovic, N. Tuneski, Zalcman and generalized Zalcman conjecture for a subclass of univalent functions, Novi Sad J. Math., 2021 (2021), 6 pages
-
[27]
H. Orhan, H. E. Toklu, Zalcman conjecture for some subclasses of analytic functions defined by Sˇalˇagean operator, J. Adv. Math. Math. Edu., 1 (2018), 1--4
-
[28]
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72--75
-
[29]
L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, B. Khan, Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, 13 (2021), 18 pages
-
[30]
Y. Sun, Z.-G. Wang, Some coefficient inequalities related to the Hankel determinant for a certain class of close-to-convex functions, Kyungpook Math. J., 59 (2019), 481--491
-
[31]
K. Trabka-Wieclaw, On coefficient problems for functions connected with the sine function, Symmetry, 13 (2021), 11 pages
-
[32]
N. H. A. A. Wahid, D. Mohamad, Bounds on Hankel determinant for starlike functions with respect to conjugate points, J. Math. Comput. Sci., 11 (2021), 3347--3360
-
[33]
N. H. A. A. Wahid, D. Mohamad, S. C. Soh, On a subclass of tilted starlike functions with respect to conjugate points, Menemui Matematik (Discovering Mathematics), 37 (2015), 1--6