Approximation of almost quadratic mappings via modular functional

Volume 29, Issue 2, pp 106--117 http://dx.doi.org/10.22436/jmcs.029.02.01
Publication Date: August 24, 2022 Submission Date: February 09, 2022 Revision Date: July 01, 2022 Accteptance Date: July 07, 2022

Authors

I.-S. Chang - Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea. H.-M. Kim - Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea. H.-W. Lee - Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea.


Abstract

In this paper, we present generalized stability results of refined quadratic functional equation \[ f(ax-by)=abf(x-y)+a(a-b)f(x)+b(b-a)f(y), \] for any fixed nonzero integer numbers \(a,b\in\mathbb{Z}\) with \(a\neq b\) in modular spaces. As results, we generalize stability results of a quadratic functional equation in [{K.-W. Jun, H.-M. Kim, J. Son, Functional Equations in Mathematical Analysis, \(\bf{2012}\) (2012), 153--164}].


Share and Cite

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
ISRP Style

I.-S. Chang, H.-M. Kim, H.-W. Lee, Approximation of almost quadratic mappings via modular functional, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 106--117

AMA Style

Chang I.-S., Kim H.-M., Lee H.-W., Approximation of almost quadratic mappings via modular functional. J Math Comput SCI-JM. (2023); 29(2):106--117

Chicago/Turabian Style

Chang, I.-S., Kim, H.-M., Lee, H.-W.. "Approximation of almost quadratic mappings via modular functional." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 106--117


Keywords


MSC