The invariance and formulas for solutions of some fifth-order difference equations
Authors
M. Folly-Gbetoula
- School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa.
D. Nyirenda
- School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa.
Abstract
Lie group analysis of the difference equations of the form
\[
x_{n+1} =\frac{x_{n-4}x_{n-3}}{x_{n}(a_n +b_nx_{n-4}x_{n-3}x_{n-2}x_{n-1})},
\]
where \(a_n\) and \(b_n\) are real sequences, is performed and non-trivial symmetries are derived. Furthermore, we find formulas for exact solutions of the equations. This work generalizes a recent result in the literature.
Share and Cite
ISRP Style
M. Folly-Gbetoula, D. Nyirenda, The invariance and formulas for solutions of some fifth-order difference equations, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 131--141
AMA Style
Folly-Gbetoula M., Nyirenda D., The invariance and formulas for solutions of some fifth-order difference equations. J Math Comput SCI-JM. (2023); 29(2):131--141
Chicago/Turabian Style
Folly-Gbetoula, M., Nyirenda, D.. "The invariance and formulas for solutions of some fifth-order difference equations." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 131--141
Keywords
- Difference equation
- symmetry
- reduction
- group invariant solutions
MSC
References
-
[1]
M. B. Almatrafi, Analysis of Solutions of Some Discrete Systems of Rational Difference Equations, J. Comput. Anal. Appl., 29 (2021), 355--368
-
[2]
M. B. Almatrafi, Exact solutions and stability of sixth order difference equations, Electron. J. Math. Anal. Appl., 10 (2022), 209--225
-
[3]
M. B. Almatrafi, M. M. Alzubaidi, Stability analysis for a rational difference equation, Arab J. Basic Appl. Sci., 27 (2020), 114--120
-
[4]
M. B. Almatrafi, M. M. Alzubaidi, The solution and dynamic behaviour of some difference equations of seventh order, J. Appl. Nonlinear Dyn., 10 (2021), 709--719
-
[5]
M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, The Solution and Dynamic Behavior of Some Difference Equations of Fourth Order, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 29 (2022), 33--50
-
[6]
E. M. Elsayed, Expression and behavior of the solutions of some rational recursive sequences, Math. Methods Appl. Sci., 2016 (2016), 5682--5694
-
[7]
M. Folly-Gbetoula, Symmetry, reductions and exact solutions of the difference equation $u_{n+2}=(au_n)/(1+bu_nu_{n+1})$, J. Difference Equ. Appl., 23 (2017), 1017--1024
-
[8]
M. K. Folly-Gbetoula, A. H. Kara, Symmetries, conservation laws, and integrability of difference equations, Adv. Difference Equ., 2014 (2014), 14 pages
-
[9]
M. Folly-Gbetoula, D. Nyirenda, On some sixth-order rational recursive sequences, J. Comput. Anal. Appl., 27 (2019), 1057--1069
-
[10]
P. E. Hydon, Symmetries and first integrals of ordinary difference equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2835--2855
-
[11]
P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge University Press, Cambridge (2014)
-
[12]
T. F. Ibrahim, A. Q. Khan, Forms of solutions for some two-dimensional systems of rational Partial Recursion Equations, Math. Probl. Eng., 2021 (2021), 10 pages
-
[13]
T. F. Ibrahim, A. Q. Khan, A. Ibrahim, Qualitative Behavior of a Nonlinear Generalized Recursive Sequence with Delay, Math. Problems Eng., 2021 (2021), 8 pages
-
[14]
N. Joshi, P. J. Vassiliou, The existence of Lie Symmetries for First-Order Analytic Discrete Dynamical Systems, J. Math. Anal. Appl., 195 (1995), 872--887
-
[15]
D. Levi, L. Vinet, P. Winternitz, Lie group formalism for difference equations, J. Phys. A, 30 (1997), 633--649
-
[16]
S. Lie, Classification und Integration von gewohnlichen Differentialgleichungen zwischen xy, die eine Gruppe von Transformationen gestatten I, Math. Ann., 22 (1888), 213--253
-
[17]
S. Maeda, Canonical structure and symmetries for discrete systems, Math. Japon., 25 (1980), 405--420
-
[18]
S. Maeda, The similarity method for difference equations, IMA J. Appl. Math., 38 (1987), 129--134
-
[19]
N. Mnguni, M. Folly-Gbetoula, Invariance analysis of a third-order difference equation with variable coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 25 (2018), 63--73
-
[20]
R. Morris, A. H. Kara, A. Chowdhury, A. Biswas, Soliton solutions, conservation laws, and reductions of certain classes of nonlinearwave equations, Zeitschrift für NaturforschungSection A, 67 (2012), 613--620
-
[21]
E. Noether, Invariante variations probleme, Math. Phys. Kl., 2 (1918), 235--257
-
[22]
D. Nyirenda, M. Folly-Gbetoula, Invariance analysis and exact solutions of some sixth-order difference equations, J. Nonlinear Sci. Appl., 10 (2017), 6262--6273
-
[23]
B. Ogul, D. Simsek, T. F. Ibrahim, Solution of the Rational Difference Equation, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 28 (2021), 125--141
-
[24]
P. J. Olver, Application of Lie Group to Differential Equation, Springer-Verlag, New York (1986)
-
[25]
G. R. W. Quispel, R. Sahadevan, Lie symmetries and the integration of difference equations, Phys. Lett. A, 184 (1993), 64--70
-
[26]
W. Sarlet, F. Cantrijn, Generalizations of Noether’s theorem in classical mechanics, SIAM Rev., 23 (1981), 467--494