\((\inf, \sup)\)-Hesitant Fuzzy Subalgebras of BCK/BCI-Algebras
Authors
N. Chunsee
- Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand.
R. Prasertpong
- Division of Mathematics and Statistics, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand.
P. Khamrot
- Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna of Phitsanulok, Phitsanulok 65000, Thailand.
T. Gaketem
- Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, Mae Ka, University of Phayao, Phayao 56000, Thailand.
A. Iampan
- Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, Mae Ka, University of Phayao, , Phayao 56000, Thailand.
P. Julatha
- Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
Abstract
In this paper, we introduce the concept of \((\inf, \sup)\)-hesitant fuzzy subalgebras, which is a general concept of interval-valued fuzzy subalgebras, in BCK/BCI-algebras and investigate its properties. We characterize \((\inf, \sup)\)-hesitant fuzzy subalgebras in terms of sets, fuzzy sets, hesitant fuzzy sets, interval-valued fuzzy sets, Pythagorean fuzzy sets, negative fuzzy sets and bipolar fuzzy sets. Furthermore, characterizations of subalgebras, fuzzy subalgebras, anti-fuzzy subalgebras, negative fuzzy subalgebras, Pythagorean fuzzy subalgebras and bipolar fuzzy subalgebras of BCK/BCI-algebras are given in terms of \((\inf, \sup)\)-hesitant fuzzy subalgebras and interval-valued fuzzy subalgebras.
Share and Cite
ISRP Style
N. Chunsee, R. Prasertpong, P. Khamrot, T. Gaketem, A. Iampan, P. Julatha, \((\inf, \sup)\)-Hesitant Fuzzy Subalgebras of BCK/BCI-Algebras, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 142--155
AMA Style
Chunsee N., Prasertpong R., Khamrot P., Gaketem T., Iampan A., Julatha P., \((\inf, \sup)\)-Hesitant Fuzzy Subalgebras of BCK/BCI-Algebras. J Math Comput SCI-JM. (2023); 29(2):142--155
Chicago/Turabian Style
Chunsee, N., Prasertpong, R., Khamrot, P., Gaketem, T., Iampan, A., Julatha, P.. "\((\inf, \sup)\)-Hesitant Fuzzy Subalgebras of BCK/BCI-Algebras." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 142--155
Keywords
- BCK/BCI-algebra
- hesitant fuzzy subalgebra
- \((\inf, \sup)\)-hesitant fuzzy subalgebra
- interval-valued fuzzy subalgebra
- Pythagorean fuzzy subalgebra
- bipolar fuzzy subalgebra
MSC
References
-
[1]
M. A. Ansari, Rough set theory applied to JU-algebras, Int. J. Math. Comput. Sci., 16 (2021), 1371--1384
-
[2]
M. A. Ansari, A. Haider, A. N. A. Koam, On JU-algebras and p-closure ideals, Int. J. Math. Comput. Sci., 15 (2020), 135--154
-
[3]
M. A. Ansari, A. Iampan, Generalized rough $(m, n)$ bi-$\Gamma$-ideals in ordered LA-$\Gamma$-semigroups, Commun. Math. Appl., 12 (2021), 545--557
-
[4]
R. K. Bandaru, On BRK-algebras,, Int. J. Math. Math. Sci., 2012 (2012), 12 pages
-
[5]
R. K. Bandaru, N. Rafi, On G-algebras,, Sci. Magna, 8 (2012), 1--7
-
[6]
R. K. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Logic Univ. Łódź., 50 (2021), 81--96
-
[7]
H. Harizavi, Y. B. Jun, $\mathrm{SUP}$-hesitant fuzzy quasi-associative ideals of BCI-algebras, Filomat, 34 (2020), 4189--4197
-
[8]
S. M. Hong, Y. B. Jun, Anti-fuzzy ideals in BCK-algebras, Kyungpook Math. J., 38 (1998), 145--150
-
[9]
Y. Huang, BCI-algebra, Science Press, Beijing (2006)
-
[10]
A. Iampan, P. Julatha, P. Khamrot, D. A. Romano, Independent UP-algebras, J. Math. Comput. Sci., 27 (2022), 65--76
-
[11]
Y. Imai, K. Iseki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19--22
-
[12]
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26--29
-
[13]
K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23 (1978/79), 1--26
-
[14]
U. Jittburus, P. Julatha, New generalizations of hesitant and interval-valued fuzzy ideals of semigroups, Adv. Math. Sci. J., 10 (2021), 2199--2212
-
[15]
U. Jittburus, P. Julatha, $\inf$-hesitant fuzzy interior ideals of semigroups, Int. J. Math. Comput. Sci., 17 (2022), 775--783
-
[16]
U. Jittburus, P. Julatha, A. Iampan, INF-Hesitant fuzzy ideals of semigroups and their INF-hesitant fuzzy translations, J. Discrete Math. Sci. Cryptogr., 2022 (2022), (accepted)
-
[17]
P. Julatha, A. Iampan, A new generalization of hesitant and interval-valued fuzzy ideals of ternary semigroups, Int. J. Fuzzy Log. Intell. Syst., 21 (2021), 169--175
-
[18]
P. Julatha, A. Iampan, $\inf$-Hesitant and $(sup, inf)$-hesitant fuzzy ideals of ternary semigroups, Missouri J. Math. Sci., 2022 (2022), (accepted)
-
[19]
P. Julatha, A. Iampan, On $\inf$-Hesitant Fuzzy $\Gamma$-Ideals of $\Gamma$-Semigroups, Adv. Fuzzy Syst., 2022 (2022), 8 pages
-
[20]
P. Julatha, A. Iampan, $\SUP$-Hesitant fuzzy ideals of $\Gamma$-semigroups, J. Math. Comput. Sci., 26 (2022), 148--161
-
[21]
Y. B. Jun, Interval-valued fuzzy subalgebras/ideals in BCK-algebras, Sci. Math., 3 (2000), 435--444
-
[22]
Y. B. Jun, Subalgebras and ideals of BCK/BCI-algebras in framework of the hesitant intersection, Kyungpook Math. J., 56 (2016), 371--386
-
[23]
Y. B. Jun, S. S. Ahn, Hesitant fuzzy set theory applied to BCK/BCI-algebras, J. Comput. Anal. Appl., 20 (2016), 635--646
-
[24]
Y. B. Jun, M. S. Kang, C. H. Park, N-Subalgebras in BCK/BCI-algebras based on point N-structures, Int. J. Math. Math. Sci., 2010 (2010), 9 pages
-
[25]
Y. B. Jun, K. J. Lee, S. Z. Song, N-Ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc., 22 (2009), 417--437
-
[26]
Y. B. Jun, S.-Z. Song, INF-hesitant fuzzy ideals in BCK/BCI-algebras, Bull. Sect. Logic Univ. Łódź., 49 (2020), 53--78
-
[27]
H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Japon., 66 (2007), 113--116
-
[28]
K. J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc. (2), 32 (2009), 361--373
-
[29]
J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994)
-
[30]
M. Mohseni Takallo, R. A. Borzooei, Y. B. Jun, Sup-Hesitant Fuzzy p-Ideals of BCI-Algebras, Fuzzy Inf. Eng., 13 (2021), 460--469
-
[31]
P. Mosrijai, A. Satirad, A. Iampan, New types of hesitant fuzzy sets on UP-algebras, Math. Morav., 22 (2018), 29--39
-
[32]
G. Muhiuddin, Hesitant fuzzy filters and hesitant fuzzy G-filters in residuated lattices, J. Comput. Anal. Appl., 21 (2016), 394--404
-
[33]
G. Muhiuddin, A. M. Alanazi, M. E. Elnair, K. P. Shum, Inf-hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras, Eur. J. Pure Appl. Math., 13 (2020), 9--18
-
[34]
G. Muhiuddin, H. Harizavi, Y. B. Jun, Ideal theory in BCK/BCI-algebras in the frame of hesitant fuzzy set theory, Appl. Appl. Math., 15 (2020), 337--352
-
[35]
G. Muhiuddin, Y. B. Jun, Sup-hesitant fuzzy subalgebras and its translations and extensions, Ann. Commun. Math., 2 (2019), 48--56
-
[36]
G. Muhiuddin, H. S. Kim, S. Z. Song, Y. B. Jun, Hesitant fuzzy translations and extensions of subalgebras and ideals in BCK/BCI-algebras, J. Intell. Fuzzy Syst., 32 (2017), 43--48
-
[37]
G. Muhiuddin, A. Mahboob, M. Balamurugan, Hesitant anti-intuitionistic fuzzy soft commutative ideals of BCKalgebras, Ann. Commun. Math., 3 (2020), 158--170
-
[38]
P. Phummee, S. Papan, C. Noyoampaeng, U. Jittburus, P. Julatha, A. Iampan, $\sup$-hesitant fuzzy interior ideals of semigroups and their $\sup$-hesitant fuzzy translations, Int. J. Innov. Comput. Inf. Control, 18 (2022), 121--132
-
[39]
C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54--57
-
[40]
V. S. Subha, P. Dhanalakshmi, New type of fuzzy ideals in BCK/BCI-algebras, World Sci. News, 153 (2021), 80--92
-
[41]
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529--539
-
[42]
V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, In: IEEE International Conference on Fuzzy Systems (Jeju, Korea South), 2009 (2009), 1378--1382
-
[43]
O. G. Xi, Fuzzy BCK-algebras, Math. Japon., 36 (1991), 935--942
-
[44]
R. R. Yager, Pythagorean fuzzy subsets, Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (Edmonton, Canada), 2013 (2013), 57--61
-
[45]
R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436--452
-
[46]
L. A. Zadeh, Fuzzy sets,, Inf. Control, 8 (1965), 338--353
-
[47]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning–I, Information Sci., 8 (1975), 199--249
-
[48]
W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, 1994 (1994), 305--309