Normal spaces associated with fuzzy nano \( M \)-open sets and its application
Authors
V. Kalaiyarasan
- Department of Mathematics , Jaya Engineering College, Tiruvallur, Tamil Nadu- 602 024, India.
S. Tamilselvan
- Mathematics Section (FEAT), Annamalai University, Annamalai Nagar - 608 002, India.
A. Vadivel
- PG and Research Department of Mathematics, Government Arts College (Autonomous), Karur - 639 005, India.
- Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India.
C. John Sundar
- Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India.
Abstract
In this paper, we introduce some new spaces called fuzzy nano \( M \) normal spaces and strongly fuzzy nano \( M \) normal spaces with the help of fuzzy nano \( M \) open sets in fuzzy nano topological space. Also, find their relations among themselves and with already existing spaces. Also, we study some basic properties and the characterizations of these normal spaces. The stated properties are quantified with numerical data. Furthermore, an algorithm for Multiple Attribute Decision-Making (MADM) with an application regarding candidates choose their works by using fuzzy nano topological spaces is developed.
Share and Cite
ISRP Style
V. Kalaiyarasan, S. Tamilselvan, A. Vadivel, C. John Sundar, Normal spaces associated with fuzzy nano \( M \)-open sets and its application, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 156--166
AMA Style
Kalaiyarasan V., Tamilselvan S., Vadivel A., Sundar C. John, Normal spaces associated with fuzzy nano \( M \)-open sets and its application. J Math Comput SCI-JM. (2023); 29(2):156--166
Chicago/Turabian Style
Kalaiyarasan, V., Tamilselvan, S., Vadivel, A., Sundar, C. John. "Normal spaces associated with fuzzy nano \( M \)-open sets and its application." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 156--166
Keywords
- Fuzzy nano open set
- fuzzy nano \( M \)-open set
- fuzzy nano \( M \)-closed set
- fuzzy nano \( M \) normal space
- strongly fuzzy nano \( M \) normal space
- fuzzy score function
MSC
References
-
[1]
D. Ajay, J. J. Charisma, Pythagorean Nano Topological Space, Int. J. Recent Tech. Eng., (),
-
[2]
D. Ajay, J. J. Charisma, T. Petaratip, P. Hammachukiattikul, N. Boonsatit, J. A. Younis, G. Rajchakit, Pythagorean Nanogeneralized Closed Sets with Application in Decision-Making, J. Funct. Spaces, 2021 (2021), 8 pages
-
[3]
I. Alshammari, M. Parimala, C. Ozel, H. Garg, Multiple Attribute Decision Making Algorithm via Picture Fuzzy Nano Topological Spaces, Symmetry, 13 (2021), 16 pages
-
[4]
M. A. Al Shumrani, S. Topal, F. Smarandache, C. Ozel, Covering-Based Rough Fuzzy, Intuitionistic Fuzzy and Neutrosophic Nano Topology and Applications, IEEE Access, 7 (2019), 172839--172846
-
[5]
S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Neutrosophic Sets Systems, (),
-
[6]
C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182--190
-
[7]
V. Chinnadurai, A. Bobin, Multiple-criteria decision analysis process by using prospect decision theory in interval-valued neutrosophic environment, CAAI Transactions on Intelligence Technology, 5 (2020), 209--221
-
[8]
V. Chinnadurai, A. Bobin, Single-valued neutrosophic N-soft set and intertemporal single-valued neutrosophic N -soft set to assess and pre-assess the mental health of students amidst COVID-19, Neutrosophic sets and systems, 38 (2020), 67--110
-
[9]
V. Chinnadurai, F. Smarandache, A. Bobin, Multi-Aspect Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices, Neutrosophic sets and systems, 31 (2020), 224--241
-
[10]
A. I. El-Maghrabi, M. A. Al-Juhani, M-open sets in topological spaces, Pioneer J. Math. Sci., 4 (2011), 213--230
-
[11]
M. Lellis Thivagar, C. Richard, On nano forms of weekly open sets, Int. J. Math. Stat. Invent., 1 (2013), 31--37
-
[12]
T.-J. Li, Y. Yeung, W.-X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, Internat. J. Approx. Reason., 48 (2008), 836--856
-
[13]
A. Padma, M. Saraswathi, A. Vadivel, G. Saravanakumar, New Notions of Nano M-open Sets, Malaya J. Mat., S (2019), 656--660
-
[14]
V. Pankajam, K. Kavitha, $\delta$-open sets and $\delta$-nano continuity in $\delta$-nano topological spaces, Int. J. Inn. Sci. Res. Tech., 2 (2017), 110--118
-
[15]
Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341--356
-
[16]
A. S. A. Raj, M. Ramachandran, Intuitionistic Fuzzy Nano Generalized Closed Sets, Asian Res. J. Math., 9 (2018), 1--6
-
[17]
M. Ramachandran, A. Stephan Antony Raj, Intuitionistic Fuzzy Nano Topological Space: Theory and Applications, Int. J. Res. Sci., 4 (2017), 1--6
-
[18]
S. Saha, Fuzzy $\delta$-continuous mappings, J. Math. Anal. Appl., 126 (1987), 130--142
-
[19]
R. Thangammal, M. Saraswathi, A. Vadivel, S. Noeiaghdam, C. J. Sundar, V. Govindan, A. Iampan, Fuzzy Nano Z-locally Closed Sets, Extremally Disconnected Spaces, Normal Spaces, and Their Application, Adv. Fuzzy Syst., 2022 (2022), 13 pages
-
[20]
R. Thangammal, M. Saraswathi, A. Vadivel, C. J. Sundar, Fuzzy nano Z-open sets in fuzzy nano topological spaces, J. Linear Topol. Algebra, 11 (2022), 27--38
-
[21]
M. L. Thivagar, S. Jafari, V. S. Devi, V. Antonysamy, A novel approach to nano topology via neutrosophic sets, Neutrosophic Sets and Systems, 20 (2018), 86--94
-
[22]
A. Vadivel, N. Moogambigai, S. Tamilselvan, P. Thangaraja, Application of Neutrosophic Sets Based on Neutrosophic Score Function in Material Selection, First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 2022 (2022), 5 pages
-
[23]
A. Vadivel, M. Seenivasan, C. J. Sundar, An Introduction to $\delta$-open sets in a Neutrosophic Topological Spaces, J. Phys. Conf. Ser., 1724 (2021), 11 pages
-
[24]
A. Vadivel, C. J. Sundar, Application of neutrosophic sets based on mobile network using neutrosophic functions, In: Emerging Trends in Industry, 2021 (2021), 1--8
-
[25]
A. Vadivel, C. J. Sundar, Neutrosophic $\delta$-Open Maps and Neutrosophic $\delta$-Closed Maps, Int. J. Neutrosophic Sci., 13 (2021), 66--74
-
[26]
A. Vadivel, C. J. Sundar, New Operators Using Neutrosophic $\delta$-Open Set, J. Neutrosophic Fuzzy Syst., 1 (2021), 61--70
-
[27]
A. Vadivel, P. Thangaraja, C. J. Sundar, Neutrosophic e-continuous maps and neutrosophic e-irresolute maps, Turkish J. Comput. Math. Edu., 12 (2021), 369--375
-
[28]
A. Vadivel, P. Thangaraja, C. J. Sundar, Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conference Proceedings, 2364 (2021), 12 pages
-
[29]
L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 338--353
-
[30]
F. Zafer, M. Akram, A novel decision-making method based on rough fuzzy information, Int. J. Fuzzy Syst., 20 (2018), 1000--1014
-
[31]
C. Zhang, D. Li, A. Sangaiah, S. Broumi, Merger and acquisition target selection based on interval neutrosophic multigranulation rough sets over two universes, Symmetry, 9 (2017), 12 pages
-
[32]
L. Zhang, J. Zhan, Z. Xu, J. C. R. Alcantud, Covering-based general multigranulation intuitionistic fuzzy rough sets and corresponding applications to multi-attribute group decision-making, Inf. Sci., 494 (2019), 114--140
-
[33]
K. Zhang, J. Zhan, Y. Yao, TOPSIS method based on a fuzzy covering approximation space: An application to biological nano-materials selection, Inf. Sci., 502 (2019), 297--329