External direct products on dual UP (BCC)-algebras
Volume 29, Issue 2, pp 175--191
https://doi.org/10.22436/jmcs.029.02.07
Publication Date: October 20, 2022
Submission Date: June 29, 2022
Revision Date: July 16, 2022
Accteptance Date: July 21, 2022
Authors
C. Chanmanee
- Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
R. Chinram
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
R. Prasertpong
- Division of Mathematics and Statistics, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand.
P. Julatha
- Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
A. Iampan
- Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
Abstract
The concept of the direct product of finite family of \(\textit{B}\)-algebras is introduced by Lingcong and Endam [J. A. V. Lingcong, J. C. Endam, Int. J. Algebra, \(\textbf{10}\) (2016), 33--40].
In this paper, we introduce the concept of the direct product of infinite family of BCC-algebras and prove that it is a dual BCC-algebras (dBCC-algebras), we call the external direct product dBCC-algebra induced by BCC-algebras, which is a general concept of the direct product in the sense of Lingcong and Endam. We find the result of the external direct product of special subsets of BCC-algebras.
Also, we introduce the concept of the weak direct product dBCC-algebras.
Finally, we provide several fundamental theorems of (anti-)BCC-homomorphisms in view of the external direct product dBCC-algebras.
Share and Cite
ISRP Style
C. Chanmanee, R. Chinram, R. Prasertpong, P. Julatha, A. Iampan, External direct products on dual UP (BCC)-algebras, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 175--191
AMA Style
Chanmanee C., Chinram R., Prasertpong R., Julatha P., Iampan A., External direct products on dual UP (BCC)-algebras. J Math Comput SCI-JM. (2023); 29(2):175--191
Chicago/Turabian Style
Chanmanee, C., Chinram, R., Prasertpong, R., Julatha, P., Iampan, A.. "External direct products on dual UP (BCC)-algebras." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 175--191
Keywords
- BCC-algebra
- dBCC-algebra
- external direct product
- weak direct product
- BCC-homomorphism
- anti-BCC-homomorphism
MSC
References
-
[1]
G. A. Abebe, On the theory of BRK-algebras, Doctoral dissertation, Department of Mathematics, Addis Ababa University (2018)
-
[2]
M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 12 pages
-
[3]
M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388--402
-
[4]
M. A. Ansari, A. N. A. Koam, A. Haidar, On binary block codes associated to UP-algebras, Ital. J. Pure Appl. Math., 47 (2022), 205--220
-
[5]
P. Burandate, S. Thongarsa, A. Iampan, Fuzzy sets in UP-algebras with respect to a triangular norm, Konuralp J. Math., 7 (2019), 410--432
-
[6]
C. Chanmanee, R. Chinram, R. Prasertpong, P. Julatha, A. Iampan, Direct product of infinite family of B-algebras, Eur. J. Pure Appl. Math., 15 (2022), 999--1014
-
[7]
R. Chinram, A. Iampan, Codewords generated by UP-valued functions, AIMS Math., 6 (2021), 4771--4785
-
[8]
W. A. Dudek, X. H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J., 48 (1998), 21--29
-
[9]
J. C. Endam, R. C. Teves, Direct product of BF-algebras, Int. J. Algebra, 10 (2016), 125--132
-
[10]
T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1--19
-
[11]
A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35--54
-
[12]
A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297--306
-
[13]
A. Iampan, Multipliers and near UP-filters of UP-algebras,, J. Discrete Math. Sci. Cryptogr., 24 (2021), 667--680
-
[14]
A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), 459--471
-
[15]
Y. Imai, K. Iseki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19--22
-
[16]
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26--29
-
[17]
Y. B. Jun, B. Brundha, N. Rajesh, R. K. Bandaru, $(3,2)$-Fuzzy UP-subalgebras and $(3,2)$-fuzzy UP-filters, J. Mahani Math. Res. Cent., 11 (2022), 1--14
-
[18]
Y. B. Jun, A. Iampan, Comparative and allied UP-filters, Lobachevskii J. Math., 40 (2019), 60--66
-
[19]
Y. B. Jun, A. Iampan, Implicative UP-filters, Afr. Mat., 30 (2019), 1093--1101
-
[20]
Y. B. Jun, A. Iampan, Shift UP-filters and decompositions of UP-filters in UP-algebras, Missouri J. Math. Sci., 31 (2019), 36--45
-
[21]
J. Kavitha, R. Gowri, Direct product of GK algebra, Indian J. Technol., 14 (2018), 2802--2805
-
[22]
C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497--505
-
[23]
A. N. A. Koam, A. Haider, M. A. Ansari, Generalized cut functions and n-ary block codes on UP-algebras, J. Math., 2022 (2022), 5 pages
-
[24]
Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29 (1984), 391--394
-
[25]
J. A. V. Lingcong, J. C. Endam, Direct product of B-algebras, Int. J. Algebra, 10 (2016), 33--40
-
[26]
J. A. V. Lingcong, J. C. Endam, Mappings of the direct product of B-algebras, Int. J. Algebra, 10 (2016), 133--140
-
[27]
G. Muhiuddin, Bipolar fuzzy $KU$-subalgebras/ideals of $KU$-algebras, Ann. Fuzzy Math. Inform., 8 (2014), 409--418
-
[28]
G. Muhiuddin, D. Al-Kadi, A. Mahboob, More general form of interval-valued fuzzy ideals of BCK/BCI-algebras, Secur. Commun. Netw., 2021 (2021), 10 pages
-
[29]
J. Neggers, H. S. Kim, On B-algebras,, Mat. Vesnik, 54 (2002), 21--29
-
[30]
C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54--57
-
[31]
D. A. Romano, Y. B. Jun, Weak implicative UP-filters of UP-algebras, Open J. Math. Sci., 4 (2020), 442--447
-
[32]
A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403--409
-
[33]
A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17--25
-
[34]
K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-algebras, Korean J. Math., 24 (2016), 345--367
-
[35]
T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 23 pages
-
[36]
T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497--517
-
[37]
A. Setiani, S. Gemawati, L. Deswita, Direct product of BP-algebra, Int. J. Math. Trends Tech., 66 (2020), 63--66
-
[38]
J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras,, Ann. Fuzzy Math. Inform., 12 (2016), 739--756
-
[39]
S. Thongarsa, P. Burandate, A. Iampan, Some operations of fuzzy sets in UP-algebras with respect to a triangular norm, Ann. Commun. Math., 2 (2019), 1--10
-
[40]
S. Widianto, S. Gemawati, Kartini, Direct product in BG-algebras, Int. J. Algebra, 13 (2019), 239--247