Conformable Gehring inequalities and conformable higher integrability
Volume 29, Issue 2, pp 192--202
https://doi.org/10.22436/jmcs.029.02.08
Publication Date: October 20, 2022
Submission Date: June 07, 2022
Revision Date: July 17, 2022
Accteptance Date: July 21, 2022
Authors
S. H. Saker
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
- Department of Mathematics, Faculty of Science, New Mansoura University, New Mansoura City, Egypt.
M. A. Darwish
- Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.
H. A. Elshamy
- Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.
Abstract
In this paper, we prove some reverse conformable inequalities with weights
and employ them to prove some conformable inequalities of Gehring type.
Moreover, we prove some interpolation theorems which are powerful tools
in\ the study of operators in function spaces. Our results develop a
technique based on the applications of a refinement of conformable
inequalities.
Share and Cite
ISRP Style
S. H. Saker, M. A. Darwish, H. A. Elshamy, Conformable Gehring inequalities and conformable higher integrability, Journal of Mathematics and Computer Science, 29 (2023), no. 2, 192--202
AMA Style
Saker S. H., Darwish M. A., Elshamy H. A., Conformable Gehring inequalities and conformable higher integrability. J Math Comput SCI-JM. (2023); 29(2):192--202
Chicago/Turabian Style
Saker, S. H., Darwish, M. A., Elshamy, H. A.. "Conformable Gehring inequalities and conformable higher integrability." Journal of Mathematics and Computer Science, 29, no. 2 (2023): 192--202
Keywords
- Conformable Gehring's inequality
- conformable Holder's inequality
- reverse inequality
MSC
- 40D05
- 40D25
- 42C10
- 43A55
- 46A35
References
-
[1]
T. Abdeljawad, On conformable fractional calculus,, J. Comput. Appl. Math., 279 (2015), 57--66
-
[2]
M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equation with deviating arguments, Indag. Math. (N.S.), 29 (2018), 548--560
-
[3]
A. Böttcher, M. Seybold, Wackelsatz and Stechkin’s inequality for discrete Muckenhoupt weights, Technische Universität Chemnitz, Fakultät für Mathematik, Fakultat fur Mathematik (1999)
-
[4]
K.-S. Chiu, T. X. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments, Math. Nachr., 292 (2019), 2153--2164
-
[5]
J. Džurina, S. R. Grace, I. Jadlovska, T. X. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910--922
-
[6]
S. Frassu, T. Li, G. Viglialoro, Improvements and generalizations of results concerning attractionrepulsion chemotaxis models, Math. Meth. Appl. Sci., 2022 (2022), 12 pages
-
[7]
S. Frassu, G. Viglialorl, Boundedness criteria for a class of indirect (and direct) chemotaxis-comsumption models in high dimensions, Appl. Math. Lett., 132 (2022), 1--7
-
[8]
F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Bull. Amer. Math. Soc., 79 (1973), 465--466
-
[9]
F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasi-conformal mapping, Acta Math., 130 (1973), 265--277
-
[10]
T. Iwaniec, On $L^{p}-$ integrability in PDEs and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A I Math., 7 (1982), 301--322
-
[11]
T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages
-
[12]
T. X. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[13]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regime, Differ. Integ. Equ., 34 (2021), 315--336
-
[14]
B. Mucheknhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207--226