Uniform asymptotic stability of \(q\)-deformed conformable fractional systems with delay and application
Volume 30, Issue 1, pp 38--47
https://doi.org/10.22436/jmcs.030.01.05
Publication Date: November 25, 2022
Submission Date: July 21, 2022
Revision Date: August 12, 2022
Accteptance Date: September 09, 2022
Authors
N. Kamsrisuk
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
P. Srisilp
- Rail System Institute of Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
T. Botmart
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
J. Tariboon
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
J. Piyawatthanachot
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
W. Chartbupapan
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
K. Mukdasai
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
Abstract
In this article, we initiate the study of new concepts of conformable \(q\)-fractional calculus. The conformable fractional \(q\)-derivative and \(q\)-integral are defined and their fundamental theorems are also proved. The uniform asymptotic stability of the \(q\)-deformed conformable fractional system with constant delay is investigated by using the Lyapunov-Razumikhin method. For application, a new asymptotic stability necessary condition for the conformable \(q\)-fractional linear system with constant delay is obtained in term of linear matrix inequality (LMI). A numerical example is demonstrated for the results given to illustrate the effectiveness.
Share and Cite
ISRP Style
N. Kamsrisuk, P. Srisilp, T. Botmart, J. Tariboon, J. Piyawatthanachot, W. Chartbupapan, K. Mukdasai, Uniform asymptotic stability of \(q\)-deformed conformable fractional systems with delay and application, Journal of Mathematics and Computer Science, 30 (2023), no. 1, 38--47
AMA Style
Kamsrisuk N., Srisilp P., Botmart T., Tariboon J., Piyawatthanachot J., Chartbupapan W., Mukdasai K., Uniform asymptotic stability of \(q\)-deformed conformable fractional systems with delay and application. J Math Comput SCI-JM. (2023); 30(1):38--47
Chicago/Turabian Style
Kamsrisuk, N., Srisilp, P., Botmart, T., Tariboon, J., Piyawatthanachot, J., Chartbupapan, W., Mukdasai, K.. "Uniform asymptotic stability of \(q\)-deformed conformable fractional systems with delay and application." Journal of Mathematics and Computer Science, 30, no. 1 (2023): 38--47
Keywords
- \(q\)-deformed conformable fractional system
- Lyapunov-Razumikhin theorem
- uniform asymptotic stability
- linear matrix inequality
MSC
References
-
[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66
-
[2]
T. Abdeljawad, D. Baleanu, Caputo q-fractional initial value problems and a q-analogue mittag-leffler function, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4682–4688
-
[3]
T. Akram, M. Abbas, A. Ali, A. Iqbal, D. Baleanu, A Numerical Approach of a Time Fractional Reaction-Diffusion Model with a Non-Singular Kernel, Symmetry, 12 (2020), 16 pages
-
[4]
T. Akram, M. Abbas, A. Iqbal, D. Baleanu, J. H. Asad, Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation, Symmetry, 12 (2020), 11 pages
-
[5]
M. Amin, M. Abbas, M. K. Iqbal, D. Baleanu, Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Fuctions, Front. Phys., 8 (2020), 12 pages
-
[6]
R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 32 (1912), 147–168
-
[7]
W. S. Chung, On the q-deformed conformable fractional calculus and the q-deformed generalized conformable fractional calculus, preprint, 2016 (2016), 11 pages
-
[8]
S. Dashkovskiy, L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems, In Proceedings of the 19th international symposium on mathematical theory of networks and systems (MTNS), 2010 (2010), 5–9
-
[9]
E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Birkh¨auser/Springer, Cham (2014)
-
[10]
X. Han, M. Hymavathi, S. Sanober, B. Dhupia, M. S. Ali, Robust Stability of Fractional Order Memristive BAM Neural Networks with Mixed and Additive Time Varying Delays, Fract. Fract., 6 (2022), 20 pages
-
[11]
O. Herscovici, T. Mansour, q-Deformed conformable fractional natural tranform, arXiv, 2018 (2018), 16 pages
-
[12]
C. H. Hou, J. X. Qian, On an estimate of the decay rate for applications of Razumikhin-type theorems, IEEE Trans. Automat. Control, 43 (1998), 958–960
-
[13]
F. H. Jackson, q-difference equations, Amer. J. Math., 32 (1910), 305–314
-
[14]
D. O. Jackson, T. Fukuda, O. Dunn, E. Majors, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203
-
[15]
F. Jarad, T. Abdeljawad, D. Baleanu, Stability of q-fractional non-autonomous systems, Nonlinear Anal. Real World Appl., 14 (2013), 780–784
-
[16]
V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York (2001)
-
[17]
R. Khalil, A. L. M. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70
-
[18]
I. Koca, E. Demirci, On local asymptotic stability of q-fractional nonlinear dynamical systems, Appl. Appl. Math., 11 (2016), 174–183
-
[19]
C. P. Li, F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27–47
-
[20]
T. D. Liu, F. Wang, W. C. Lu, X. H. Wang, Global stabilization for a class of nonlinear fractional-order systems, Int. J. Model. Simul. Sci. Comput., 10 (2019), 11 pages
-
[21]
L. Liu, S. Zhong, Finite-time stability analysis of fractional-order with multi-state time delay, Int. J. Math. Comput. Sci., 5 (2011), 9 pages
-
[22]
A. Majeed, M. Kamran, M. Abbas, M. Y. Bin Misro, An Efficient Numerical Scheme for The Simulation of Time- Fractional Nonhomogeneous Benjamin-Bona-Mahony-Burger Model, Phys. Scr., 8 (2021), 10 pages
-
[23]
A. Majeed, M. Kamran, M. Abbas, J. Singh, An Efficient Numerical Technique for Solving Time-Fractional Generalized Fisher’s Equation, Front. Phys., 8 (2020), 8 pages
-
[24]
M. Musraini, E. Rustam, L. Endang, H. Ponco, Classical properties on conformable fractional calculus, Pure Appl. Math. J., 8 (2019), 83–87
-
[25]
A. Souahi, A. Ben Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N.S.), 28 (2017), 1265–1274
-
[26]
M. Syed Ali, M. Hymavathi, S. A. Kauser, G. Rajchakit, P. Hammachukiattikul, N. Boonsatit, Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks, Fract. Fract., 6 (2022), 17 pages
-
[27]
M. Syed Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 22 pages
-
[28]
M. Syed Ali, G. Narayanan, V. Shekher, H. Alsulami, T. Saeed, Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms, Appl. Math. Comput., 369 (2020), 23 pages
-
[29]
M. Syed Ali, G. Narayanan, V. Shekher, S. Arik, Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 12 pages
-
[30]
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 19 pages
-
[31]
A. R. Teel, Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Trans. Automat. Control, 43 (1998), 960–964
-
[32]
M. Tenenbaum, H. Pollard, Ordinary differential equations, Dover Publications, New York (1986)
-
[33]
F. Usta, M. Z. Sarikaya, Explicit bounds on certain integral inequalities via conformable fractional calculus, Cogent Math., 4 (2017), 8 pages
-
[34]
F. Usta, M. Z. Sarikaya, Some improvements of conformable fractional integral inequalities, Int. J. Anal. Appl., 14 (2017), 162–166
-
[35]
X. H. Wang, Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients, Adv. Differ. Equ., 16 (2018), 14 pages