Decision making on the mappings' ideal solution of a fuzzy non-linear matrix system of Kannan-type
Volume 30, Issue 1, pp 48--66
https://doi.org/10.22436/jmcs.030.01.06
Publication Date: November 25, 2022
Submission Date: August 17, 2022
Revision Date: September 23, 2022
Accteptance Date: September 27, 2022
Authors
A. O. Mustafa
- University of Jeddah, College of Business at Khulis, Jeddah, Saudi Arabia.
- Wadi Al-Neel University, Faculty of Economics and Administrative Sciences, Sudan.
A. A. Bakery
- University of Jeddah, College of Science and Arts at Khulis, Department of Mathematics, Jeddah, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt.
Abstract
Since proving many fixed point theorems in a given space requires either growing the space itself or growing the self-mapping that works on it, both of these options are good. The operators' ideal generated by a weighted binomial matrix in the Nakano sequence space of extended s-fuzzy functions is constructed. Some structures for it based on geometry and topology are presented. It has been proven that the Kannan contraction operator has a unique fixed point in this class. Lastly, sufficient conditions such that a fuzzy non-linear matrix system of Kannan-type has a unique solution in this ideal class are investigated and a numerical example to explain our results are given.
Share and Cite
ISRP Style
A. O. Mustafa, A. A. Bakery, Decision making on the mappings' ideal solution of a fuzzy non-linear matrix system of Kannan-type, Journal of Mathematics and Computer Science, 30 (2023), no. 1, 48--66
AMA Style
Mustafa A. O., Bakery A. A., Decision making on the mappings' ideal solution of a fuzzy non-linear matrix system of Kannan-type. J Math Comput SCI-JM. (2023); 30(1):48--66
Chicago/Turabian Style
Mustafa, A. O., Bakery, A. A.. "Decision making on the mappings' ideal solution of a fuzzy non-linear matrix system of Kannan-type." Journal of Mathematics and Computer Science, 30, no. 1 (2023): 48--66
Keywords
- Binomial matrix
- Nakano sequence space
- extended \(s\)-fuzzy functions
- multiplication mapping
- Kannan contraction mapping
MSC
References
-
[1]
M. Abbas, G. Murtaza, S. Romaguera, Soft contraction theorem, J. Nonlinear Convex Anal., 16 (2015), 423–435
-
[2]
B. Altay, F. Bas¸ar, Generalization of the sequence space l(p) derived by weighted mean, J. Math. Anal. Appl., 330 (2007), 174–185
-
[3]
H. Altinok, R. Colak, M. Et, -difference sequence spaces of fuzzy numbers, Fuzzy Sets Syst., 160 (2009), 3128–3139
-
[4]
A. A. Bakery, A. R. A. Elmatty, A note on Nakano generalized difference sequence space, Adv. Differ. Equ., 2020 (2020), 17 pages
-
[5]
A. A. Bakery, O. S. K. Mohamed, Orlicz Generalized Difference Sequence Space and the Linked Pre-Quasi Operator Ideal, J. Math., 2020 (2020), 9 pages
-
[6]
A. A. Bakery, O. S. K. Mohamed, Kannan Prequasi Contraction Maps on Nakano Sequence Spaces, J. Funct. Spaces, 2020 (2020), 10 pages
-
[7]
A. A. Bakery, O. S. K. Mohamed, Kannan nonexpansive maps on generalized Ces`aro backward difference sequence space of non-absolute type with applications to summable equations, J. Inequal. Appl., 2021 (2021), 10 pages
-
[8]
A. A. Bakery, E. A. E. Mohamed, On the Nonlinearity of Extended s-type weighted Nakano Sequence Spaces of Fuzzy Functions with Some Applications, J. Funct. Spaces, 2022 (2022), 20 pages
-
[9]
S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., 3 (1922), 133–181
-
[10]
I. Beg, Ordered Uniform Convexity in Ordered Convex Metric Spaces with an Application to Fixed Point Theory, J. Funct. Spaces, 2022 (2022), 7 pages
-
[11]
C.-M. Chen, I.-J Lin, Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space, J. Inequal. Appl., 2015 (2015), 9 pages
-
[12]
R. C¸ olak, H. Altınok, M. Et, Generalized difference sequences of fuzzy numbers, Chaos Solitons Fractals, 40 (2009), 1106–1117
-
[13]
D. Dubois, H. Prade, Possibility theory: An approach to computerized processing of uncertainty, Plenum Press, New York (1998)
-
[14]
N. Faried, A. A. Bakery, Small operator ideals formed by s numbers on generalized Ces´aro and Orlicz sequence spaces, J. Inequal. Appl., 2018 (2018), 1–14
-
[15]
S. J. H. Ghoncheh, Some Fixed point theorems for Kannan mapping in the modular spaces, Cienc. eNat., 37 (2015), 462–466
-
[16]
L. Guo, Q. Zhu, Stability analysis for stochastic Volterra-Levin equations with Poisson jumps: fixed point approach, J. Math. Phys., 52 (2011), 15 pages
-
[17]
B. Hazarika, E. Savas, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comput. Modelling, 54 (2011), 2986–2998
-
[18]
R. Kannan, Some results on fixed points. II, Amer. Math. Monthly, 76 (1969), 405–408
-
[19]
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083
-
[20]
M. Matloka, Sequences of fuzzy numbers, Busefal, 28 (1986), 28–37
-
[21]
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31
-
[22]
M. Mursaleen, A. K. Noman, On some new sequence spaces of non-absolute type related to the spaces `p and `1 I, Filomat, 25 (2011), 33–51
-
[23]
M. Mursaleen, F. Bas¸ar, Domain of Ces`aro mean of order one in some spaces of double sequences, Studia Sci. Math. Hung., 51 (2014), 335–356
-
[24]
S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst., 33 (1989), 123–126
-
[25]
F. Nuray, E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45 (1995), 269–273
-
[26]
A. Pietsch, s-numbers of operators in Banach spaces, Studia Math., 51 (1974), 201–223
-
[27]
A. Pietsch, Operator Ideals, VEB Deutscher Verlag derWissenschaften, Berlin (1978)
-
[28]
A. Pietsch, Operator Ideals, North-Holland Publishing Company, Amsterdam-New York-Oxford (1980)
-
[29]
A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York (1986)
-
[30]
B. E. Rhoades, Operators of A - p type, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 59 (1976), 238–241
-
[31]
M. Ruˆzircuˇziˇcka, Electrorheological fluids. Modeling and mathematical theory, In Lecture Notes in Mathematics, Springer-Verlag, Berlin (2000)
-
[32]
P. Salimi, A. Latif, N. Hussain, Modified - -contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 19 pages
-
[33]
B. C. Tripathy, P. Sudipta, R. D. Nanda, Banach’s and Kannan’s fixed point results in fuzzy 2-metric spaces, Proyecciones, 32 (2013), 359–375
-
[34]
B. C. Tripathy, S. Paul, N. R. Das, A fixed point theorem in a generalized fuzzy metric space, Bol. Soc. Parana. Mat. (3), 32 (2014), 221–227
-
[35]
B. C. Tripathy, S. Paul, N. R. Das, Fixed point and periodic point theorems in fuzzy metric space, Songklanakarin J. Sci. Technol., 37 (2015), 89–92
-
[36]
B. C. Tripathy, S. Paul, N. R. Das, Some fixed point theorems in generalized M-fuzzy metric space, Bol. Soc. Paran. Mat., (In Press),
-
[37]
M. Younis, D. Singh, S. Radenovi´c, M. Imdad, Convergence theorems for generalized contractions and applications, Filomat, 34 (2020), 945–964
-
[38]
L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353