Solitary and periodic wave solutions of the loaded Boussinesq and the loaded modified Boussinesq equation
Volume 30, Issue 1, pp 67--74
https://doi.org/10.22436/jmcs.030.01.07
Publication Date: December 01, 2022
Submission Date: April 30, 2022
Revision Date: September 22, 2022
Accteptance Date: October 07, 2022
Authors
B. Babajanov
- Department of Applied Mathematics and Mathematical Physics, Urgench State University, Urgench, Uzbekistan.
F. Abdikarimov
- Khorezm Mamun Academy, Khiva, Uzbekistan.
Abstract
In this article, we establish new traveling wave solutions for the loaded Boussinesq equation and the loaded modified Boussinesq equation by the functional variable method. The performance of this method is reliable and effective and gives the exact solitary wave solutions and periodic wave solutions of the loaded Boussinesq equation and its modifications. The traveling wave solutions obtained via this method are expressed by hyperbolic functions and the trigonometric functions. The graphical representations of some obtained solutions are demonstrated to better understand their physical features, including bell-shaped solitary wave solutions, singular soliton solutions and solitary wave solutions of kink type. This method presents a wider applicability for handling nonlinear wave equations.
Share and Cite
ISRP Style
B. Babajanov, F. Abdikarimov, Solitary and periodic wave solutions of the loaded Boussinesq and the loaded modified Boussinesq equation, Journal of Mathematics and Computer Science, 30 (2023), no. 1, 67--74
AMA Style
Babajanov B., Abdikarimov F., Solitary and periodic wave solutions of the loaded Boussinesq and the loaded modified Boussinesq equation. J Math Comput SCI-JM. (2023); 30(1):67--74
Chicago/Turabian Style
Babajanov, B., Abdikarimov, F.. "Solitary and periodic wave solutions of the loaded Boussinesq and the loaded modified Boussinesq equation." Journal of Mathematics and Computer Science, 30, no. 1 (2023): 67--74
Keywords
- Loaded modified Boussinesq equation
- hyperbolic functions
- trigonometric functions
- periodic wave solutions
- soliton solutions
- functional variable method
MSC
- 34A34
- 34B15
- 35Q51
- 35J60
- 35J66
References
-
[1]
A. S. Abdel Rady, E. S. Osman, M. Khalfallah, On soliton solutions of the (2 + 1) dimensional Boussinesq equation, Appl. Math. Comput., 219 (2012), 3414–3419
-
[2]
S. Ahmad, A. Ullah, A. Akg¨ ul, F. Jarad, A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: application to KdV and Fornberg-Witham equations, AIMS Math., 7 (2022), 9389–9404
-
[3]
M. N. Alam, M. G. Hafez, M.A. Akbar, H.-O.-Roshid, Exact Solutions to the (2+1)-dimensional Boussinesq Equation via exp(-'())-Expansion Method, J. Sci. Res., 7 (2015), 1–10
-
[4]
B. Babajanov, F. Abdikarimov, Soliton Solutions of the Loaded Modified Calogero-Degasperis Equation, Int. J. Appl. Math., 32 (2022), 381–392
-
[5]
B. Babajanov, F. Abdikarimov, Expansion Method for the Loaded Modified Zakharov-Kuznetsov Equation, Adv. Math. Models Appl., 7 (2022), 168–177
-
[6]
B. Babajanov, F. Abdikarimov, Solitary and periodic wave solutions of the loaded modified Benjamin-Bona-Mahony equation via the functional variable method, Res. Math., 30 (2022), 10–20
-
[7]
B. Babajanov, F. Abdikarimov, Exact Solutions of the Nonlinear Loaded Benjamin-Ono Equation, WSEAS Trans. Math., 21 (2022), 666–670
-
[8]
B. Babajanov, F. Abdikarimov, The Application of the Functional Variable Method for Solving the Loaded Non-linear Evaluation Equations, Front. Appl. Math. Stat, 8 (2022), 9 pages
-
[9]
U. I. Baltaeva, On some boundary value problems for a third order loaded integro-differential equation with real parameters, Vestn. Udmurt. Univ., Mat. Mekh. Komp. Nauki, 3 (2012), 3–12
-
[10]
A. Bekir, A. Cevikel, E. H. M. Zahran, New impressive representations for the soliton behaviors arising from the (2+1)- Boussinesq equation, J. Ocean Eng. Sci., (2022), 6 pages
-
[11]
A. Biswas, D. Milovic, A. Ranasinghe, Solitary waves of Boussinesq equation in a power law media, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3738–3742
-
[12]
Z.-D. Dai, D.-Q. Xian, D.-L. Li, Homoclinic Breather-Wave with Convective Effect for the (1+1)-dimensional Boussinesq Equation, Chinese Phys. Lett., 26 (2009), 1–3
-
[13]
L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkh¨auser , Boston (1997)
-
[14]
G. Forozani, M. Ghorveei Nosrat, Solitary solution of modified bad and good Boussinesq equation by using of tanh and extended tanh methods, Indian J. Pure Appl. Math., 44 (2013), 497–510
-
[15]
A. U. Gulalai, S. Ahmad, M. Inc, Fractal fractional analysis of modified KdV equation under three different kernels, J. Ocean Eng. Sci., (2022), 14 pages
-
[16]
A. Harir, S. Melliani, L. S. Chadli, Solving fuzzy Burgers equation by variational iteration method, J. Math. Comput. Sci., 21 (2020), 136–149
-
[17]
R. Hirota, Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, J. Math. Phys., 14 (1973), 810–814
-
[18]
M. Hosseini, H. Abdollahzadeh, M. Abdollahzadeh, Exact Travelling Solutions for the Sixth-order Boussinesq Equation, J. Math. Comput. Sci, 2 (2011), 376–387
-
[19]
M. S. Ismail, A. G. Bratsos, A predictor-corrector scheme for the numerical solution of the Boussinesq equation, J. Appl. Math. Comput., 13 (2003), 11–27
-
[20]
M. Javidi, Y. Jalilian, Exact solitary wave solution of Boussinesq equation by VIM, Chaos Solitons Fractals, 36 (2008), 1256–1260
-
[21]
A. B. Khasanov, U. A. Hoitmetov, On integration of the loaded mKdV equation in the class of rapidly decreasing functions, Izv. Irkutsk. Gos. Univ. Ser. Mat., 38 (2021), 19–35
-
[22]
A. Kneser, Belastete integralgleichungen, Rend. Circ. Matem. Palermo, 37 (1914), 169–197
-
[23]
A. I. Kozhanov, A nonlinear loaded parabolic equation and a related inverse problem, Math. Notes, 76 (2004), 784–795
-
[24]
C. Liu, D. Dai, Exact periodic solitary wave solutions for the (2 + 1)-dimensional Boussinesq equation, J. Math. Anal. Appl., 367 (2010), 444–450
-
[25]
L. Lichtenstein, Vorlesungen ¨uber einige Klassen nichtlinearer Integralgleichungen und Integro-Differential-Gleichungen nebst Anwendungen, Springer-Verlag, Berlin (1931)
-
[26]
V.G. Makhankov, Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., 35 (1978), 1–128
-
[27]
A. M. Nahuˇsev, Boundary value problems for loaded integro-differential equations of hyperbolic type and some of their applications to the prediction of ground moisture, Differ. Uravn., 15 (1979), 96–105
-
[28]
A. M. Nakhushev, Loaded equations and their applications, Differ. Uravn., 19 (1983), 86–94
-
[29]
T. Nazir, M. Abbas, M. K. Iqbal, A new quintic B-spline approximation for numerical treatment of Boussinesq equation, J. Math. Comput. Sci., 20 (2020), 30–42
-
[30]
L. T. K. Nguyen, Soliton solution of good Boussinesq equation, Vietnam J. Math., 44 (2016), 375–385
-
[31]
G. U. Urazboev, I. I. Baltaeva, I. D. Rakhimov, Generalized (G’/G)-Expansion method for loaded Korteweg-de Vries equation, Sib. Zh. Ind. Mat., 24 (2021), 139–147
-
[32]
A.-M. Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007), 479–486
-
[33]
A.-M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 889–901
-
[34]
A. B. Yakhshimuratov, B. A. Babajanov, Integration of equations of Kaup system kind with self-consistent source in class of periodic functions, Ufa Math. J., 12 (2020), 104-–114
-
[35]
A. Yildirim, S.T. Mohyud-Din, A variational approach for soliton solutions of good Boussinesq equation, J. King Saud Univ. Sci., 22 (2010), 205–208
-
[36]
X.-L. Yin, S.-X. Kong, Y.-Q. Liu, Zheng X.-T. Zheng, New scheme for nonlinear Schr¨odinger equations with variable coefficients, J. Math. Comput. Sci., 19 (2019), 151–157
-
[37]
A. Zerarka, S. Ouamane, Application of the functional variable method to a class of nonlinear wave equations, World J. Model. Simul., 6 (2010), 150–160
-
[38]
A. Zerarka, S. Ouamane, A. Attaf, On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. Comput., 217 (2010), 2897–2904