On the existence and stability of Caputo Volterra-Fredholm systems
Volume 30, Issue 4, pp 322--331
http://dx.doi.org/10.22436/jmcs.030.04.02
Publication Date: February 09, 2023
Submission Date: October 15, 2022
Revision Date: December 12, 2022
Accteptance Date: December 31, 2022
Authors
S. A. M. Jameel
- Department of Computer Systems, Middle Technical University, Institute of Administration Rusafa, Baghdad-10045, Iraq.
Abstract
In this paper, we discuss several problems related to the neutral fractional Volterra-Fredholm integro-differential systems in Banach spaces. Existence of the
Schaefer's fixed point and Ulam-Hyers-Rassias stability properties for the fixed point problem will be discussed. Some results are presented, under appropriate conditions, and
some open questions are pointed out. Our results extend recent results given for \(\psi\)-fractional derivative.
Share and Cite
ISRP Style
S. A. M. Jameel, On the existence and stability of Caputo Volterra-Fredholm systems, Journal of Mathematics and Computer Science, 30 (2023), no. 4, 322--331
AMA Style
Jameel S. A. M., On the existence and stability of Caputo Volterra-Fredholm systems. J Math Comput SCI-JM. (2023); 30(4):322--331
Chicago/Turabian Style
Jameel, S. A. M.. "On the existence and stability of Caputo Volterra-Fredholm systems." Journal of Mathematics and Computer Science, 30, no. 4 (2023): 322--331
Keywords
- \(\psi\)-Caputo fractional derivative
- integro-differential equation
- fixed point technique
- stability problem
MSC
References
-
[1]
A. M. Abed, M. F. Younis, A. A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27 (2022), 189–201
-
[2]
A. Aghajani, Y. Jalilian, J. J. Trujillo, On the existence of solutions of fractional integro-differential equations, Fract. Calc. Appl. Anal., 15 (2012), 44–69
-
[3]
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481
-
[4]
M. Alesemi, N. Iqbal, A. A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1–13
-
[5]
M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958
-
[6]
R. L. Bagley, P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23 (1985), 918–925
-
[7]
R. T. Baillie, Long memory processes and fractional integration in econometrics, J. Econom., 73 (1996), 5–59
-
[8]
R. Belgacem, A. Bokhari, B. Sadaoui, Shehu transform of Hilfer-Prabhakar fractional derivatives and applications on some Cauchy type problems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 203–214
-
[9]
E. Baskin, A. Iomin, Electro-chemical manifestation of nanoplasmonics in fractal media, Cent. Eur. J. Phys., 11 (2013), 676–684
-
[10]
W. H. Deng, C. P. Li, Chaos synchronization of the fractional L ¨u system, Phys. A: Stat. Mech. Appl., 2005 (353), 61–72
-
[11]
A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321–331
-
[12]
A. A. Hamoud, K. P. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5 (2019), 58–69
-
[13]
A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135–144
-
[14]
A. A. Hamoud, K. P. Ghadle, M. Sh. B. Issa, Giniswamy, Existence and uniqueness theorems for fractional Volterra- Fredholm integro-differential equations, Int. J. Appl. Math., 31 (2018), 333–348
-
[15]
J. H. He, Nonlinear oscillation with fractional derivative and its applications, In Proceedings of the International Conference on Vibrating Engineering, 98 (1998), 288–291
-
[16]
R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore (1999)
-
[17]
K. Hussain, A. Hamoud, N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 827–836
-
[18]
M. B. Issa, A. A. Hamoud, K. P. Ghadle, Numerical solutions of fuzzy integro-differential equations of the second kind, J. Math. Comput. Sci., 23 (2021), 67–74
-
[19]
H. Khan, U. Farooq, R. Shah, D. Baleanu, P. Kumam, M. Arif, Analytical solutions of (2+Time fractional order) dimensional physical models, using modified decomposition method, Appl. Sci., 10 (2019), 109–122
-
[20]
A. Loverro, Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique, Univeristy of Notre Dame, Department of Aerospace and Mechanical Engineering, (2004),
-
[21]
S. Magar, A. Hamoud, A. Khandagale, K. Ghadle, Generalized Shehu Transform to -Hilfer-Prabhakar Fractional Derivative and its Regularized Version, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 364–379
-
[22]
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, arXiv preprint, (2012), 58 pages
-
[23]
P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., 102 (2015), 631–642
-
[24]
K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the timefractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 1–21
-
[25]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
-
[26]
Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67
-
[27]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Amsterdam (1993)
-
[28]
N. A. Shah, H. A. Alyousef, S. A. El-Tantawy, R. Shah, J. D. Chung, Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo Operator: modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 726–739
-
[29]
K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of -fractional pantograph equations with boundary conditions, Bol. Soc. Parana. Mat., 39 (2021), 43–55
-
[30]
J. V. C. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of -Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106