Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions
Authors
Sh. M Al-Issa
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, The International University of Beirut, Beirut, Lebanon.
I. H. Kaddoura
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, The International University of Beirut, Beirut, Lebanon.
N. J. Rifai
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
Abstract
In this paper, the existence and Ulam-Hyers stability of solutions for implicit second order fractional differential equations are investigated via fractional-orders integral boundary conditions. Our results are based on Krasnoselskii's fixed point Theorem and Banach contraction principle. We provide examples at the end to clarify our acquired outcomes..
Share and Cite
ISRP Style
Sh. M Al-Issa, I. H. Kaddoura, N. J. Rifai, Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions, Journal of Mathematics and Computer Science, 31 (2023), no. 1, 15--29
AMA Style
Al-Issa Sh. M, Kaddoura I. H., Rifai N. J., Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions. J Math Comput SCI-JM. (2023); 31(1):15--29
Chicago/Turabian Style
Al-Issa, Sh. M, Kaddoura, I. H., Rifai, N. J.. "Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions." Journal of Mathematics and Computer Science, 31, no. 1 (2023): 15--29
Keywords
- \(\phi\)-Caputo fractional order
- existence results
- Green's function
- boundary value problems
- Ulam-Hyers stability
MSC
References
-
[1]
S. Abbas, M. Benchohra, On the generalized Ulam-Hyers-Rassias stability for Darboux problem for partial fractional implicit differential equations, Appl. Math. E-Notes, 14 (2014), 20–28
-
[2]
S. Abbas, M. Benchohra, G. M. N’Gu´er´ekata, Topics in Fractional Differential Equations, Springer, New York (2012)
-
[3]
O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700–711
-
[4]
R. P. Agarwal, S. Arshad, D. O’Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572–590
-
[5]
R. P. Agarwal, M. Benchohra, S. Hamani, Boundary value problems for fractional differential equations, Georg. Math. J., 16 (2009), 401-411
-
[6]
Sh. M. Al-Issa, A. M. A. El-Sayed, Y. M. Y. Omar, On some characterizations of the solutions of a hybrid nonlinear functional integral inclusion and applications, J. Math. Comput. Sci., 28 (2023), 21–36
-
[7]
Sh. M. Al-Issa, N. M. Mawed, Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra, J. Nonlinear Sci. Appl., 14 (2021), 181–195
-
[8]
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481
-
[9]
T. A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31
-
[10]
A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients, Electron. J. Differ. Equ., 2006 (2006), 1–12
-
[11]
M. Belmekki, M. Benchohra, Existence results for fractional order semilinear functional differential equations, Proc. A. Razmadze Math. Inst., 146 (2008), 9–20
-
[12]
M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851–863
-
[13]
M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1–12
-
[14]
M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350
-
[15]
S. Chasreechai, J. Tariboon, Positive solutions to generalized second-order three-point integral boundary-value problems, Electron. J. Differ. Equ., 2011 (2011), 14 pages
-
[16]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York (2012)
-
[17]
A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal., 33 (1998), 181–186
-
[18]
A. M. A. El-Sayed, Sh. M Al-Issa, Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach, J. Nonlinear Sci. Appl., 13 (2020), 180–186
-
[19]
A. M. A. El-Sayed, Sh. M. Al-Issa, M. H. Hijazi, Existence results for a functional integro-differential inclusions with Riemann-Stieltjes integral or infinite-point boundary conditions, Surv. Math. Appl., 16 (2021), 301–325
-
[20]
A. El-Sayed, H. Hashem, Sh. Al-Issa, Analysis of a hybrid integro-differential inclusion, Bound. Value Probl., 2022 (2022), 1–21
-
[21]
M. Hu, L. Wang, Existence of solutions for a nonlinear fractional differential equation with integral boundary condition, Int. J. Math. Comput. Sci., 5 (2011), 55–58
-
[22]
S.-M. Jung, K.-S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coeficients, Math. Inequal. Appl., 10 (2007), 261–266
-
[23]
A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differ. Equ., 41 (2005), 84–89
-
[24]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006)
-
[25]
V. Kiryakova, Generalized Fractional Calculus and Applications, J. Wiley & Sons Inc., New York (1994)
-
[26]
V. Lakshmikantham, S. Leela, J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, (2009)
-
[27]
S. A. Murad, S. Hadid, Existence and uniqueness theorem for fractional differential equation with integral boundary condition, J. Frac. Calc. Appl., 3 (2012), 1–9
-
[28]
M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993), 259–270
-
[29]
I. Podlubny, A. M. A. EL-Sayed, On two defintions of fractional calculus, Preprint UEF 03-69, Solvak Academy of science-Institute of Experimental phys., (1996),
-
[30]
S. G. Samko, A. A. Kilbas, O. I. Mariche, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
-
[31]
J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673–693