Combination complex synchronization among three incommensurate fractional-order chaotic systems
-
3588
Downloads
-
6394
Views
Authors
Cuimei Jiang
- College of Control Science and Engineering, Shandong University, Jinan 250061, P. R. China.
Changan Liu
- Department of Mathematics, University of Houston, Houston 77024, U. S. A.
Shutang Liu
- College of Control Science and Engineering, Shandong University, Jinan 250061, P. R. China.
Fangfang Zhang
- School of Electrical Engineering and Automation, Qilu University of Technology, Jinan 250353, P. R. China.
Abstract
The problem of combination complex synchronization among three incommensurate fractionalorder
chaotic systems is considered. Based on the stability theory of incommensurate fractional-order
systems and the feedback control technique, some robust criteria on combination complex synchronization
are presented. Notably, the proposed combination complex synchronization can establish
a link between the incommensurate fractional-order complex chaos and real chaos. Moreover, three
numerical simulations are provided, which agree well with the theoretical analysis.
Share and Cite
ISRP Style
Cuimei Jiang, Changan Liu, Shutang Liu, Fangfang Zhang, Combination complex synchronization among three incommensurate fractional-order chaotic systems, Journal of Mathematics and Computer Science, 16 (2016), no. 3, 308--323
AMA Style
Jiang Cuimei, Liu Changan, Liu Shutang, Zhang Fangfang, Combination complex synchronization among three incommensurate fractional-order chaotic systems. J Math Comput SCI-JM. (2016); 16(3):308--323
Chicago/Turabian Style
Jiang, Cuimei, Liu, Changan, Liu, Shutang, Zhang, Fangfang. "Combination complex synchronization among three incommensurate fractional-order chaotic systems." Journal of Mathematics and Computer Science, 16, no. 3 (2016): 308--323
Keywords
- Combination complex synchronization
- chaotic complex system
- fractional-order system
- feedback control technique.
MSC
References
-
[1]
F. T. Arecchi, R. Meucci, A. Di Garbo, E. Allaria, Homoclinic chaos in a laser: synchronization and its implications in biological systems, Opt. Lasers Eng., 39 (2003), 293-304.
-
[2]
S. Bhalekar, V. Daftardar-Gejji, Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3536-3546.
-
[3]
B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399 (1999), 354-359.
-
[4]
L. P. Chen, Y. Chai, R. C. Wu , Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems , Phys. Lett. A, 375 (2011), 2099-2110.
-
[5]
W. H. Deng, C. P. Li, J. H. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409-416.
-
[6]
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approch for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.
-
[7]
H. Dimassi, A. Loria, Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication, IEEE Trans. Circuits Syst.-I Regul. Pap., 58 (2011), 800-812.
-
[8]
G. H. Erjaee, S. Momani , Phase synchronization in fractional differential chaotic systems, Phys. Lett. A, 372 (2008), 2350-2354.
-
[9]
I. Grigorenko, E. Grigorenko , Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 4 pages.
-
[10]
A. S. Hegazi, E. Ahmed, A. E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1193-1202.
-
[11]
H. H. C. Iu, C. K. Tse, A study of synchronization in chaotic autonomous Cuk DC/DC converters, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 47 (2000), 913-918.
-
[12]
C. M. Jiang, S. T. Liu, C. Luo , A new fractional-order chaotic complex system and its antisynchronization, Abstr. Appl. Anal., 2014 (2014), 12 pages.
-
[13]
C. M. Jiang, S. T. Liu, D. Wang, Ceneralized combination complex synchronization for fractional-order chaotic complex systems, Entropy, 17 (2015), 5199-5217.
-
[14]
C. M. Jiang, S. T. Liu, F. F. Zhang, Complex modified projective synchronization for fractional-order chaotic complex systems, Int. J. Autom. Comput., (2017), 1-13
-
[15]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam (2006)
-
[16]
C.-M. Kim, S. Rim, W.-H. Kye, J.-W. Ryu, Y.-J. Park, Anti-synchronization of chaotic oscillators, Phys. Lett. A, 320 (2003), 39-46.
-
[17]
C. G. Li, G. R. Chen, Chaos in the fractional order Chen system and its control, Chaos, Solitons Fractals, 22 (2004), 549-554.
-
[18]
C. G. Li, G. R. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A, 341 (2004), 55-61.
-
[19]
C. D. Li, X. F. Liao, Lag synchronization of Rössler system and Chua circuit via a scalar signal, Phys. Lett. A, 329 (2004), 301-308.
-
[20]
J. Liu, Complex modifed hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos , Entropy, 16 (2014), 6195-6211.
-
[21]
X. J. Liu, L. Hong, L. X. Yang, Fractional-order complex T system: bifurcations, chaos control, and synchronization, Nonlinear Dynam., 75 (2014), 589-602.
-
[22]
P. Liu, H. J. Song, X. Li, Observe-based projective synchronization of chaotic complex modified Van der Pol-Duffing oscillator with application to secure communication, ASME J. Comput. Nonlinear Dynam., 10 (2015), 7 pages.
-
[23]
S. T. Liu, F. F. Zhang, Complex function projective synchronization of complex chaotic system and its applications in secure communications, Nonlinear Dynam. , 76 (2014), 1087-1097.
-
[24]
J. Q. Lu, J. D. Cao, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos, 15 (2005), 10 pages.
-
[25]
C. Luo, X. Y. Wang, Chaos in the fractional-order complex Lorenz system and its synchronization, Nonlinear Dynam., 71 (2013), 241-257.
-
[26]
C. Luo, X. Y. Wang, Chaos generated from the fractional-order complex Chen system and its application to digital secure communication, Int. J. Modern Phys. C, 24 (2013), 23 pages.
-
[27]
R. Z. Luo, Y. L. Wang, S. C. Deng, Combination synchronization of three classic chaotic systems using active backstepping design, Chaos, 21 (2011), 6 pages.
-
[28]
G. M. Mahmoud, T. M. Abed-Elhameed, M. E. Ahmed, Generalization of combination-combination synchronization of chaotic n-dimensional fractional-orer dynamical systems, Nonlinear Dynam., 83 (2016), 1885-1893.
-
[29]
G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa, On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communictations, Phys. Scr., 87 (2013), 10 pages.
-
[30]
R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 82 (1999), 3042-3045.
-
[31]
D. Matignon, Stability results for fractional differential equations with applications to control processing, In: IMACS, IEEE-SMC, Lille , France (1996)
-
[32]
P. A. Mohammad, P. A. Hasan, Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs, Nonlinear Dynam., 73 (2013), 363-376.
-
[33]
L. M. Pecora, T. L. Caroll , Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.
-
[34]
M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 1804-1807.
-
[35]
M. Srivastava, S. P. Ansari, S. K. Agrawal, S. Das, A. Y. T. Leung, Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method, Nonlinear Dynam., 76 (2014), 905-914.
-
[36]
J. W. Sun, G. Z. Cui, Y. F. Wang, Y. Shen, Combination complex synchronization of three chaotic complex systems, Nonlinear Dynam., 79 (2015), 953-965.
-
[37]
J. W. Sun, Y. Shen, Y. Quan, C. J. Xu, Compound synchronization for four memristor chaotic oscillator systems and secure communication, Chaos, 23 (2014), 10 pages.
-
[38]
J. W. Sun, Y. Shen, G. D. Zhang, C. J. Xu, G. Z. Cui, Combination-combination synchronization among four identical or different chaotic systems, Nonlinear Dynam., 73 (2013), 1211-1222.
-
[39]
M. S. Tavazoei, M. Haeri, Synchronization of chaotic fractional-order systems via active sliding mode controller, Phys. A, 387 (2008), 57-70.
-
[40]
L. Wang, B. Yang, Y. Chen, X. Q. Zhang, J. Orchard, Improving Neural-Network classifiers using nearest neighbor partitioning, IEEE Trans. Neural Netw. Learn. Syst., 28 (2016), 2255 - 2267