Nörlund \(\mathcal{I}\)-convergent double sequence spaces via Orlicz function
Volume 31, Issue 1, pp 95--101
http://dx.doi.org/10.22436/jmcs.031.01.08
Publication Date: April 14, 2023
Submission Date: January 29, 2023
Revision Date: February 17, 2022
Accteptance Date: March 03, 2022
Authors
N. Khan
- Dept. of Mathematics, College of Science, Taibah University, Madina, Saudi Arabia.
M. Al-labadi
- Dept. of Basic Science and Humanities, Faculty of Arts and Science, University of Petra, Amman, Jordan.
A. Al-Balawi
- Dept. of Mathematics, College of Science, Taibah University, Madina, Saudi Arabia.
E. Almuhur
- Dept. of Basic Science and Humanities, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan.
Abstract
In the present article, we introduce some new classes of \(\mathcal{I}\)-convergent double sequence spaces defined by Orlicz function using the Nörlund mean. We also find the condition for any sequence in these spaces to be \(\mathcal{I}\)-convergent and draw some inclusion relations between them.
Share and Cite
ISRP Style
N. Khan, M. Al-labadi, A. Al-Balawi, E. Almuhur, Nörlund \(\mathcal{I}\)-convergent double sequence spaces via Orlicz function, Journal of Mathematics and Computer Science, 31 (2023), no. 1, 95--101
AMA Style
Khan N., Al-labadi M., Al-Balawi A., Almuhur E., Nörlund \(\mathcal{I}\)-convergent double sequence spaces via Orlicz function. J Math Comput SCI-JM. (2023); 31(1):95--101
Chicago/Turabian Style
Khan, N., Al-labadi, M., Al-Balawi, A., Almuhur, E.. "Nörlund \(\mathcal{I}\)-convergent double sequence spaces via Orlicz function." Journal of Mathematics and Computer Science, 31, no. 1 (2023): 95--101
Keywords
- Nörlund sequences
- Orlicz function
- ideal
- filter
- ideal-convergence
MSC
References
-
[1]
Y. Altin, M. Et, B. C. Tripathy, The sequence space j¯Npj(M, r, q, s) on seminormed spaces, Appl. Math. Comput., 154 (2004), 423–430
-
[2]
C. Boonpok, On L-closed sets and some low separation axioms in ideal topological spaces, WSEAS Trans. Math., 19 (2020), 334–342
-
[3]
P. Das, P. Kostyrko, W. Wilczy ´ nski, P. Malik, I and I-convergence of double sequences, Math. Slovaca, 58 (2008), 605–620
-
[4]
A. Esi, Strongly [V2, 2,M,p]-summable double sequence spaces defined by Orlicz function, Int. J. Nonlinear Anal. Appl., 2 (2011), 103–108
-
[5]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244
-
[6]
R. Fatima, S. Tabassum, Defining some new n-tuple sequence spaces related to lp space with the help of Orlicz function, Novi Sad J. Math., 51 (2021), 79–90
-
[7]
G. H. Hardy, Divergent series, Oxford University Press, (1949)
-
[8]
N. Khan, Classes of I-Convergent Double Sequences over n-Normed Spaces, J. Funct. Spaces, 2016 (2016), 1–7
-
[9]
V. A. Khan, Some Geometric Properties for N¨orlund Sequence Spaces, Nonlinear Anal. Forum, 11 (2006), 101–108
-
[10]
V. A. Khan, Nearly uniform convexity of a N¨orlund-Musielak-Orlicz sequence space, Int. Math. Forum, 3 (2008), 1945– 1958
-
[11]
V. A. Khan, E. E. Kara, H. Altaf, N. Khan, M. Ahmad, Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces, J. Inequal. Appl., 2019 (2019), 7 pages
-
[12]
V. A. Khan, N. Khan, Zweier I-convergent double sequence spaces defined by Orlicz function, J. Appl. Math. Inform., 32 (2014), 687–695
-
[13]
V. A. Khan, I. A. Khan, Spaces of intuitionistic fuzzy N¨orlund I-convergent sequences, Afr. Mat., 33 (2022), 12 pages
-
[14]
V. A. Khan, R. K. A. Rababah, A. Esi, S. A. A. Abdullah, K. M. A. S. Alshlool, Some new spaces of ideal convergent double sequences by using compact operator, J. Appl. Sci., 17 (2017), 467–474
-
[15]
V. A. Khan, S. A. A. Abdullah, K. M. A. S. Alshlool, A study of N¨orlund ideal convergent sequence spaces, Yugosl. J. Oper. Res., 31 (2021), 483–494
-
[16]
V. A. Khan, S. A. A. Abdullah, K. M. A. S. Alshlool, U. Tuba, N. Khan, On ideal convergence of double sequences in 2—fuzzy n—normed linear space, Appl. Math. J. Chinese Univ. Ser. B, 37 (2022), 177–186
-
[17]
P. Kostyrko, T. ˇSal´at, W. Wilczy ´ nski, I-convergence, Real Anal. Exch., 26 (2000), 669–685
-
[18]
J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390
-
[19]
E. Rodriguez, C. Granados, J. Bermudez, A Generalized of N¨orlund Ideal Convergent Double Sequence Spaces, WSEAS Trans. Math., 20 (2021), 562–568
-
[20]
T. ˇSal´at, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., 28 (2004), 279–286
-
[21]
E. Savas, Some New Double Sequence Spaces Defined by Orlicz Function in n-normed space, J. Inequal. Appl., 2011 (2011), 9 pages
-
[22]
N. Subramanian, A. Esi, The N¨orlund space of double entire sequences, Fasc. Math., 43 (2010), 147–153
-
[23]
B. C. Tripathy, A. Baruah, N¨orlund and Riesz mean of sequences of fuzzy real numbers, Appl. Math. Lett., 23 (2010), 651–655
-
[24]
B. C. Tripathy, B. Hazarika, Some I-Convergent sequence spaces defined by Orlicz function, Acta Math. Appl. Sin. Engl. Ser., 27 (2011), 149–154
-
[25]
B. C. Tripathy, B. Sarma, Sequence spaces of fuzzy real numbers defined by Orlicz functions, Math. Slovaca, 58 (2008), 621–628
-
[26]
C. S. Wang, On N¨orlund sequence spaces, Tamkang J. Math., 9 (1978), 269–274